Shock and Vibration
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision95 days
Acceptance to publication17 days
CiteScore2.800
Journal Citation Indicator0.400
Impact Factor1.6

TVMS Calculation and Dynamic Analysis of Cracked Gear considering Oil Film Stiffness

Read the full article

 Journal profile

Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. 

 Editor spotlight

Chief Editor Dr Tai Thai is based at the University of Melbourne and his current research focuses on high strength materials for sustainable construction of buildings, bridges and other infrastructure.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Driving Comfort Analysis Method of Highway Bridge Based on Human-Vehicle-Bridge Interaction

Research on evaluating highway bridge performance through vehicle-bridge interaction (VBI) analysis has made significant advancements. However, when assessing driving comfort, using vehicle acceleration instead of human acceleration poses challenges in accurately representing comfort. First, the paper proposes a finite element analysis method for human-vehicle-bridge spatial interactions (HVBSIs). Then, the importance of wheel path roughness difference is explored when assessing driving comfort. Furthermore, a new method for evaluating driving comfort that includes human and vehicle vibration responses has been proposed, and a simulation example of the steel-concrete composite beam bridge (SCCBB) is used to verify the effectiveness of the proposed method. The results demonstrate that the HVBSI analysis method effectively simulates the interconnected vibrations of the human body, the spatial vehicle model, and the three-dimensional (3D) bridge model. Differences in wheel path roughness significantly impact the roll vehicle vibration responses, which are crucial in driving comfort analysis. The driver’s body vibration response is essential for evaluating driving comfort, and its inclusion leads to increased comfort indices values. In comparison to traditional methods, the overall vibration total value (OVTV) increases by a maximum of 109.04%, and the level of weighted vibration () increases by a maximum of 6.74%. This leads to an upgrade from grade IV to grade V in terms of comfort level, indicating a reduced comfort.

Research Article

Efficacy of the Combined Use of Bed Sill and Sacrificial Piles to Control Local Scour around Circular Bridge Piers

In this study, the results are presented and discussed from laboratory test campaigns specifically designed to investigate the behavior of sacrificial piles as a countermeasure against local scouring at a circular bridge pier and clear-water conditions with flow intensity slightly below the threshold of sediment motion. Sacrificial piles are assessed on the upstream side of the pier in two transverse and triangular arrangements. Piles can reduce scouring by deflecting the flow and creating a low-velocity wake region behind them. The efficiency of the piles against local scouring depends on the diameter of the piles, the number of piles, and the angle of the wedge. The investigation was aimed at evaluating the effectiveness of the sacrificial piles as a function of different dimensionless groups. It was found that the triangular arrangement of sacrificial piles has better results than the transverse arrangement. The results showed that the triangular sacrificial piles reduced the maximum local scour depth at the pier to 37.2% in the best configuration. Combined countermeasures were tested, which were composed of sacrificial piles and a bed sill downstream of the pier; in the best configuration, the scour depth reduction in front of the pier reached 51.1%. The increased efficiency of the combination of bed sill and sacrificial piles (BSSP) is an advantage that can reduce the risk of pier failure when the duration of the flood is short. This last result shows that a combination of BSSP may be a very effective countermeasure against local scouring at bridge piers. Finally, the coherent turbulent flow structure around the best combination of BSSP was investigated, and its effect on the bed scouring pattern was studied. A 3D analysis of the bursting process was used. Turbulence characteristics, as well as the occurrence and transition probabilities of bursting events, were calculated. The obtained results confirmed the quite effective effect of the combination of these two countermeasures in reducing the scour depth.

Research Article

Numerical Investigation on the Flow Field of Muzzle Decompression Device for the Barrel Recoil Gun

A structured dynamic overlapping grid and a user-defined function are used to study the projectile launching process, and the hybrid Roe scheme is used to solve the flow field with strong shock wave. The launching process of a projectile with a muzzle decompression device is numerically simulated by using a three-dimensional transient model, and the flow field inside the muzzle decompression device and the development process of the muzzle flow field in the projectile launching process are discussed in detail. Compared with no device, the muzzle decompression device can effectively reduce the peak pressure around the muzzle; the numerical results are in agreement with the corresponding experimental values. The numerical investigation in this paper is helpful to understand the mechanism of pressure reduction of the device. It also provides a new way to reduce the muzzle pressure of aircraft gun.

Research Article

Research on Vehicle Vibration Fatigue Damage Potential under Non-Gaussian Road Profile Excitation

The amplitude modulation method was used to generate a non-Gaussian road profile with prescribed power spectral density (PSD) and kurtosis. The vehicle vibration fatigue damage potential has been proven to be closely related to the amplitude modulation signal (AMS) and kurtosis of vehicle response. In this paper, the iterative method of AMS modelling based on absolute standard Gaussian distribution is first reviewed. To address the long iteration time problem, a closed-form formulation is presented to construct the AMS directly. Furthermore, by proving that the vehicle response under a slowly varying non-Gaussian road profile excitation can be regarded as the product of the same AMS and vehicle response under a Gaussian road profile excitation with the same PSD, the theoretical relationship between fatigue damage spectrum (FDS) of vehicle response under non-Gaussian and corresponding Gaussian road profiles is formulated based on the AMS. A case study is used to verify the proposed approach. The results show that a wide range of specified kurtosis of road profile can be achieved and the kurtosis of vehicle response is the same as for the road profile. Given kurtosis and fatigue exponent, the extra fatigue damage caused by non-Gaussian road profile can be derived easily from the corresponding Gaussian road profile without calculating the vehicle response, which lays the foundation for a significantly simplified and more accurate fatigue test of vehicle vibration under non-Gaussian road profile.

Research Article

Simulation of Vortex-Induced Vibration for a Cylinder with Different Rounded Corners under Re = 150

A comprehensive 2D numerical model was conscientiously developed to investigate the vortex-induced vibration phenomena in a cylindrical structure with rounded corners. The Navier-Stokes equation was adeptly solved under the specific condition of a Reynolds number (Re) of 150. The investigation reveals intricate details of the phenomena. The study aimed to systematically analyze the interaction between drag and lift force coefficients, cylinder vibration amplitude, and the patterns of vortex shedding modes under various conditions. This study systematically altered the radius of the cylinder’s rounded corners to evaluate their effects on both structural and hydrodynamic responses. This variation was crucial in comprehending how slight alterations in the cylinder’s geometry impact significant changes in the flow dynamics and correlated vibration behavior. The model’s numerical results revealed the significant impact of the curved edge ratio on both the hydrodynamic forces acting on the cylinder and its vibration response. The variation in edge curvature resulted in changes in drag and lift coefficients, leading to a significant impact on the amplitude of vibration. This elucidates the crucial role of geometric design in controlling and optimizing the structural behavior of cylindrical structures under fluid flow conditions.

Research Article

Impact-Rubbing Dynamics of Rotor with Hollow Shaft and Offset Discs Based on MDOF Timoshenko Beam Theory

The impact-rubbing dynamic characteristics of the power turbine rotor with the hollow shaft and offset discs for aircraft engine are investigated, and the impact-rubbing analytical method for the complex rotor based on MDOP Timoshenko beam theory is proposed in this paper. Compared with the traditional approach, the novel method can obtain more data to satisfy the need of engineering. The Lagrange equation is adopted to derive the equations of motion for the rotor system, and the Newmark-β method is applied to solve the equations. The diagrams such as the bifurcation, axis trajectory, spectrum, and Poincaré map are obtained to research on the effect of the rotating speed, gap, and eccentricity on the vibration response. The finite element analysis was carried out to validate the correctness of the theoretical modeling method. The research results indicate that the power turbine rotor with the hollow shaft on operation shows the various nonlinear dynamic behaviors including the multiperiod, quasi-period, jumping phenomenon, and chaotic motions; there exists an optimal gap between the rotor and the stator from the perspective of the efficiency and the dynamics; the optimal gap should make system avoid the resulting chaos or the quasi-period motion for the stability and safety of the machinery.

Shock and Vibration
 Journal metrics
See full report
Acceptance rate25%
Submission to final decision95 days
Acceptance to publication17 days
CiteScore2.800
Journal Citation Indicator0.400
Impact Factor1.6
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.