Research Article

Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach

Table 14

Architecture of LSTM, DNN, and GRU used for experiments.

LSTMDNNGRU

LSTM (32)Dense (64, activation = “relu”)GRU (64, return_sequences = True))
Dropout (0.2)Dropout (0.2)SimpleRNN (32)
Dense (64, activation = “relu”)Dense (64, activation = “relu”)Dense (32)
Dropout (0.2)Dropout (0.2)Dropout (0.2)
Dense (2, activation = “softmax”)Dense (2, activation = “softmax”)Dense (16)
Dense (2, activation = “softmax”)
Loss = “binary_crossentropy,” optimizer = “Adam,” epochs = 100