Abstract
The differential equation
The differential equation
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, “Nauka”, Moscow, Russia, 1967.
M. I. Vishik, A. D. Myshkis, and O. A. Oleinik, “Partial differential equations,” in Mathematics in USSR in the Last 40 Years, 1917–1957, Vol. 1, pp. 563–599, Fizmatgiz, Moscow, Russia, 1959.
View at: Google ScholarP. E. Sobolevskii, “Well-posedness of difference elliptic equation,” Discrete Dynamics in Nature and Society, vol. 1, no. 3, pp. 219–231, 1997.
View at: Publisher Site | Google Scholar | Zentralblatt MATHP. E. Sobolevskii, “Coerciveness inequalities for abstract parabolic equations,” Doklady Akademii Nauk SSSR, vol. 157, no. 1, pp. 52–55, 1964 (Russian).
View at: Google Scholar | Zentralblatt MATH | MathSciNetP. E. Sobolevskii, “Some properties of the solutions of differential equations in fractional spaces,” Trudy Naucno-Issledovatel'skogi Instituta Matematiki VGU, vol. 14, pp. 68–74, 1975 (Russian), [RZh. Mat. 1975:7 B825].
View at: Google ScholarG. Da Prato and P. Grisvard, “Sommes d'opérateurs linéaires et équations différentielles opérationnelles,” Journal de Mathématiques Pures et Appliquées. Neuvième Série, vol. 54, no. 3, pp. 305–387, 1975.
View at: Google Scholar | Zentralblatt MATH | MathSciNetG. Da Prato and P. Grisvard, “Équations d'évolution abstraites non linéaires de type parabolique,” Comptes Rendus de l'Académie des Sciences Série A-B, vol. 283, no. 9, pp. A709–A711, 1976.
View at: Google Scholar | Zentralblatt MATH | MathSciNetA. Ashyralyev, A. Hanalyev, and P. E. Sobolevskii, “Coercive solvability of the nonlocal boundary value problem for parabolic differential equations,” Abstract and Applied Analysis, vol. 6, no. 1, pp. 53–61, 2001.
View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNetA. Ashyralyev and P. E. Sobolevskii, Positive Operators and the Fractional Spaces. The Methodical Instructions for the Students of Engineering Grups, Offset Laboratory VSU, Voronezh, Russia, 1989.
A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, vol. 69 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1994.
View at: Zentralblatt MATH | MathSciNetA. Ashyralyev, I. Karatay, and P. E. Sobolevskii, “On well-posedness of the nonlocal boundary value problem for parabolic difference equations,” Discrete Dynamics in Nature and Society, vol. 2004, no. 2, pp. 273–286, 2004.
View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNetA. E. Polička and P. E. Sobolevskii, “Correct solvability of parabolic difference equations in Bochner spaces,” Trudy Moskovskogo Matematicheskogo Obshchestva, vol. 36, pp. 29–57, 294, 1978 (Russian).
View at: Google Scholar | MathSciNetA. Ashyralyev, “Nonlocal boundary-value problems for abstract parabolic equations: well-posedness in Bochner spaces,” Journal of Evolution Equations, vol. 6, no. 1, pp. 1–28, 2006.
View at: Publisher Site | Google Scholar | MathSciNetP. E. Sobolevskii, “The coercive solvability of difference equations,” Doklady Akademii Nauk SSSR, vol. 201, no. 5, pp. 1063–1066, 1971 (Russian).
View at: Google Scholar | Zentralblatt MATH | MathSciNetA. Ashyralyev and P. E. Sobolevskii, “The theory of interpolation of linear operators and the stability of difference schemes,” Doklady Akademii Nauk SSSR, vol. 275, no. 6, pp. 1289–1291, 1984 (Russian).
View at: Google Scholar | Zentralblatt MATH | MathSciNetA. Ashyralyev, S. Piskarev, and L. Weis, “On well-posedness of difference schemes for abstract parabolic equations in spaces,” Numerical Functional Analysis & Optimization, vol. 23, no. 7-8, pp. 669–693, 2002.
View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNetD. Guidetti, B. Karasözen, and S. Piskarev, “Approximation of abstract differential equations,” Journal of Mathematical Sciences (New York), vol. 122, no. 2, pp. 3013–3054, 2004.
View at: Publisher Site | Google Scholar | MathSciNetA. Ashyralyev and P. E. Sobolevskii, “Well-posed solvability of the Cauchy problem for difference equations of parabolic type,” Nonlinear Analysis, vol. 24, no. 2, pp. 257–264, 1995.
View at: Publisher Site | Google Scholar | Zentralblatt MATH | MathSciNetA. Ashiraliev and P. E. Sobolevskii, “Differential schemes of the high-order accuracy for parabolic equations with variable-coefficients,” Dopovidi Akademii Nauk Ukrainskoi RSR, Seriya À- Fiziko-Matematichni ta Technichni Nauki, vol. 6, pp. 3–7, 1988 (Russian).
View at: Google ScholarA. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, vol. 148 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 2004.
View at: Zentralblatt MATH | MathSciNetH. Amann, “Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications,” Mathematische Nachrichten, vol. 186, pp. 5–56, 1997.
View at: Google Scholar | Zentralblatt MATH | MathSciNetH. Triebel, Interpolation Theory, Function Spaces, Differential Operators, vol. 18 of North-Holland Mathematical Library, North-Holland, Amsterdam, The Netherlands, 1978.
View at: Zentralblatt MATH | MathSciNet