Abstract

We study the existence of solutions for deviated-advanced nonlocal and integral condition problems for the differential inclusion π‘₯1(𝑑)∈𝐹(𝑑,π‘₯(𝑑)).

1. Introduction

Problems with nonlocal conditions have been extensively studied by several authors in the last two decades. The reader is referred to [1–12] and references therein. Consider the deviated-advanced nonlocal problem 𝑑π‘₯(𝑑)π‘‘π‘‘βˆˆπΉ(𝑑,π‘₯(𝑑)),a.e.π‘‘βˆˆ(0,1),(1.1)π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=𝛼𝑛𝑗=1𝑏𝑗π‘₯ξ€·πœ“ξ€·πœ‚π‘—ξ€Έξ€Έ,π‘Žπ‘˜,𝑏𝑗>0,(1.2) where πœπ‘˜,πœ‚π‘—βˆˆ(0,1), 𝛼>0 is a parameter, and πœ“ and πœ™ are, respectively, deviated and advanced given functions.

Our aim here is to study the existence of at least one absolutely continuous solution π‘₯∈AC[0,1] for the problem (1.1)-(1.2) when the set-valued function πΉβˆΆπ‘…β†’π‘ƒ(𝑅) is 𝐿1-CarathΓ©odory.

As an application, we deduce the existence of a solution for the nonlocal problem of the differential inclusion (1.1) with the deviated-advanced integral condition ξ€œ10ξ€œπ‘₯(πœ™(𝑠))𝑑𝑠=𝛼10π‘₯(πœ“(𝑠))𝑑𝑠.(1.3)

It must be noticed that the following nonlocal and integral conditions are special cases of our nonlocal and integral conditions π‘₯(πœ™(𝜏))=𝛼π‘₯(πœ“(πœ‚)),𝜏,πœ‚βˆˆ(0,1),π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=𝛼π‘₯(πœ“(πœ‚)),πœπ‘˜,πœ‚βˆˆ(0,1),π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=0,πœπ‘˜ξ€œβˆˆ(0,1),10π‘₯π›Όξ€œ(πœ™(𝑠))𝑑𝑠=𝛼π‘₯(πœ“(πœ‚)),πœ‚βˆˆ(0,1),10ξ€œπ‘₯(πœ“(𝑠))𝑑𝑠=π‘₯(πœ™(𝜏)),𝜏∈(0,1),10ξ€œπ‘₯(πœ™(𝑠))𝑑𝑠=0,10π‘₯(πœ“(𝑠))𝑑𝑠=0.(1.4) As an example of the deviated function πœ™βˆΆ(0,1)β†’(0,1), we have πœ™(𝑑)=𝛽𝑑,π›½βˆˆ(0,1). As an example of the advanced function πœ“βˆΆ(0,1)β†’(0,1), we have πœ“(𝑑)=𝑑𝛽,π›½βˆˆ(0,1).

2. Preliminaries

The following preliminaries are needed.

Definition 2.1. A set-valued function 𝐹∢[0,1]×𝑅→𝑃(𝑅) is called 𝐿1-CarathΓ©odory if(a)𝑑→𝐹(𝑑,π‘₯) is measurable for each π‘₯βˆˆπ‘…,(b)π‘₯→𝐹(𝑑,π‘₯) is upper semicontinuous for almost all π‘‘βˆˆ[0,1],(c)there exists π‘šβˆˆπΏ1([0,1],𝐷),π·βŠ‚π‘… such that ||||𝐹(𝑑,π‘₯)=sup{|𝑣|βˆΆπ‘£βˆˆπΉ(𝑑,π‘₯)}β‰€π‘š(𝑑),foralmostall[].π‘‘βˆˆ0,1(2.1)

Definition 2.2. A single-valued function π‘“βˆΆ[0,1]×𝑅→𝑅  is called 𝐿1-CarathΓ©odory if(i)𝑑→𝑓(𝑑,π‘₯) is measurable for each π‘₯βˆˆπ‘…,(ii)π‘₯→𝑓(𝑑,π‘₯) is continuous for almost all π‘‘βˆˆ[0,1],(iii)there exists π‘šβˆˆπΏ1([0,1],𝐷),π·βŠ‚π‘… such that |𝑓|β‰€π‘š.

Definition 2.3. The set 𝑆1𝐹(β‹…,π‘₯(𝑑))[]={π‘“βˆˆ(0,1,𝑅)βˆΆπ‘“(𝑑,π‘₯)∈𝐹(𝑑,π‘₯(𝑑))fora.e.[]}π‘‘βˆˆ0,1(2.2) is called the set of selections of the set-valued function 𝐹.

Theorem 2.4. For any 𝐿1-CarathΓ©odory set-valued function 𝐹, the set 𝑆1𝐹(β‹…,π‘₯(𝑑)) is nonempty [1, 13].

Theorem 2.5 (CarathΓ©odory, [14]). Let π‘“βˆΆ[0,1]×𝑅→𝑅 be 𝐿1-CarathΓ©odory. Then the problem 𝑑π‘₯(𝑑)𝑑𝑑=𝑓(𝑑,π‘₯(𝑑)),fora.e.𝑑>0,π‘₯(0)=π‘₯0,(2.3) has at least one solution π‘₯∈AC[0,𝑇].

3. Existence of Solution

Consider the following assumptions. (i)𝐹∢[0,1]×𝑅→𝑃(𝑅+) is  𝐿1-CarathΓ©odory.(ii)𝛼𝑛𝑗=1π‘π‘—β‰ π‘šξ“π‘˜=1π‘Žπ‘˜.(3.1)(iii)πœ™βˆΆ(0,1)β†’(0,1),πœ™(𝑑)≀𝑑 is a deviated continuous function.(iv)πœ“βˆΆ(0,1)β†’(0,1),πœ“(𝑑)β‰₯𝑑 is an advanced continuous function.

Now we have the following lemma.

Lemma 3.1. Let assumptions (i)-(ii) be satisfied. The solution of the nonlocal problem (1.1)-(1.2) can be expressed by the integral equation π‘₯(𝑑)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠,(3.2) where 𝑓(𝑑,π‘₯)∈𝐹(𝑑,π‘₯),forallπ‘₯βˆˆπ‘…, and βˆ‘π΄=(𝛼𝑛𝑗=1π‘π‘—βˆ’βˆ‘π‘šπ‘˜=1π‘Žπ‘˜)βˆ’1.

Proof. From the assumption that the set-valued function 𝐹∢[0,1]×𝑅→𝑃(𝑅+) is 𝐿1-CarathΓ©odory, then (Theorem 2.4) there exists a single-valued selection π‘“βˆΆ[0,1]×𝑅→𝑅+ such that 𝑑𝑑𝑑π‘₯(𝑑)=𝑓(𝑑,π‘₯)∈𝐹(𝑑,π‘₯),βˆ€π‘₯βˆˆπ‘….(3.3) This selection 𝑓(𝑑,π‘₯) is 𝐿1-CarathΓ©odory.
Integrating (3.3), we get ξ€œπ‘₯(𝑑)=π‘₯(0)+𝑑0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.4) Let 𝑑=πœ™(πœπ‘˜). Then π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜=ξ€Έξ€Έπ‘šξ“π‘˜=1π‘Žπ‘˜π‘₯(0)+π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.5) Let 𝑑=πœ“(πœ‚π‘—). Then 𝛼𝑛𝑗=1𝑏𝑗π‘₯ξ€·πœ“ξ€·πœ‚π‘—ξ€Έξ€Έ=𝛼𝑛𝑗=1𝑏𝑗π‘₯(0)+𝛼𝑛𝑗=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.6) From (3.5) and (3.6), we obtain π‘₯(0)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ,𝑓(𝑠,π‘₯(𝑠))𝑑𝑠(3.7) where βˆ‘π΄=(𝛼𝑛𝑗=1π‘π‘—βˆ’βˆ‘π‘šπ‘˜=1π‘Žπ‘˜)βˆ’1, π›Όβˆ‘π‘›π‘—=1π‘π‘—β‰ βˆ‘π‘šπ‘˜=1π‘Žπ‘˜.
Substituting (3.7) into (3.4), we obtain π‘₯(𝑑)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.8) This proves that the solution of the nonlocal problem (1.1)-(1.2) can be expressed by the integral equation (3.2).

For the existence of the solution, we have the following theorem.

Theorem 3.2. Assume that (i)–(iv) are satisfied. Then the integral equation (3.2) has at least one continuous solution π‘₯∈𝐢[0,1].

Proof. Define a subset π‘„π‘ŸβŠ‚πΆ[0,1] by π‘„π‘Ÿ=ξƒ―[]∢||||π‘₯∈𝐢0,1π‘₯(𝑑)β‰€π‘Ÿ,π‘Ÿ=𝐴𝑀1+π‘šξ“π‘˜=1π‘Žπ‘˜+𝛼𝑛𝑗=1𝑏𝑗.ξƒͺξƒ°(3.9) Clearly, the set π‘„π‘Ÿ is nonempty, closed, and convex.
Let 𝐻 be an operator defined by (𝐻π‘₯)(𝑑)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.10) Let π‘₯βˆˆπ‘„π‘Ÿ. Let {π‘₯𝑛(𝑑)} be a sequence in π‘„π‘Ÿ converging to π‘₯(𝑑),π‘₯𝑛(𝑑)β†’π‘₯(𝑑),forallπ‘‘βˆˆπΌ. Then limπ‘›β†’βˆžξ€·π»π‘₯𝑛(𝑑)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜limπ‘›β†’βˆžξ€œπœ™(πœπ‘˜)0𝑓𝑠,π‘₯𝑛(𝑠)π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1𝑏𝑗limπ‘›β†’βˆžξ€œπœ“(πœ‚π‘—)0𝑓𝑠,π‘₯𝑛ξƒͺ(𝑠)𝑑𝑠+limπ‘›β†’βˆžξ€œπ‘‘0𝑓𝑠,π‘₯𝑛(𝑠)𝑑𝑠,(3.11) By assumptions (i)-(ii) and the Lebesgue dominated convergence theorem, we deduce that limπ‘›β†’βˆžξ€·π»π‘₯𝑛(𝑑)=(𝐻π‘₯)(𝑑).(3.12) Then 𝐻 is continuous.
Now, lettingπ‘₯βˆˆπ‘„π‘Ÿ, (thenπœ™(𝑑)≀𝑑 and πœ“(𝑑)β‰₯𝑑), we obtain (𝐻π‘₯)(𝑑)β‰€π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœπ‘˜0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ‚π‘—0ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑0||||𝑓(𝑠,π‘₯(𝑠))𝑑𝑠,(𝐻π‘₯)(𝑑)β‰€π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœπ‘˜0||||𝑓(𝑠,π‘₯(𝑠))𝑑𝑠+𝛼𝑛𝑗=1π‘π‘—ξ€œπœ‚π‘—0||||ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑0||𝑓||(𝑠,π‘₯(𝑠))π‘‘π‘ β‰€π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœπ‘˜0π‘š(𝑠)𝑑𝑠+𝛼𝑛𝑗=1π‘π‘—ξ€œπœ‚π‘—0ξƒͺ+ξ€œπ‘š(𝑠)𝑑𝑠𝑑0ξƒ©π‘š(𝑠)π‘‘π‘ β‰€π΄π‘šξ“π‘˜=1π‘Žπ‘˜π‘€+𝛼𝑛𝑗=1𝑏𝑗𝑀ξƒͺ+𝑀≀𝐴𝑀1+π‘šξ“π‘˜=1π‘Žπ‘˜+𝛼𝑛𝑗=1𝑏𝑗ξƒͺβ‰€π‘Ÿ.(3.13) Then {𝐻π‘₯(𝑑)} is uniformly bounded in π‘„π‘Ÿ.
Also for 𝑑1,𝑑2∈(0,1),𝑑1<𝑑2 such that |𝑑2βˆ’π‘‘1|<𝛿, we have (𝑑𝐻π‘₯)2ξ€Έξ€·π‘‘βˆ’(𝐻π‘₯)1ξ€Έ=ξ€œπ‘‘20ξ€œπ‘“(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π‘‘10||𝑑𝑓(𝑠,π‘₯(𝑠))𝑑𝑠,(𝐻π‘₯)2ξ€Έξ€·π‘‘βˆ’(𝐻π‘₯)1ξ€Έ||β‰€ξ€œπ‘‘2𝑑1||||β‰€ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠𝑑2𝑑1||ξ€·π‘‘π‘š(𝑠)𝑑𝑠,(𝐻π‘₯)2ξ€Έβˆ’ξ€·π‘‘(𝐻π‘₯)1ξ€Έ||β‰€πœ€.(3.14) Hence the class of functions {𝐻π‘₯(𝑑)} is equicontinuous. By Arzela-Ascoli's theorem, {𝐻π‘₯(𝑑)} is relatively compact. Since all conditions of Schauder's theorem hold, then 𝐻 has a fixed point in π‘„π‘Ÿ.
Therefore the integral equation (3.2) has at least one continuous solution π‘₯∈𝐢(0,1). Now, lim𝑑→0π‘₯(𝑑)=𝐴lim𝑑→0ξƒ©π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ𝑓(𝑠,π‘₯(𝑠))𝑑𝑠+lim𝑑→0ξ€œπ‘‘0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0ξƒͺ𝑓(𝑠,π‘₯(𝑠))𝑑𝑠=π‘₯(0).(3.15) Also π‘₯(1)=lim𝑑→1π‘₯(𝑑)=π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ‘›ξ“π‘—=1π‘π‘—ξ€œπœ™(πœ‚π‘—)0ξƒͺ+ξ€œπ‘“(𝑠,π‘₯(𝑠))𝑑𝑠10𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.16) Then the integral equation (3.2) has at least one continuous solution π‘₯∈𝐢[0,1].

The following theorem proves the existence of at least one solution for the nonlocal problem(1.1)-(1.2).

Theorem 3.3. Let (i)–(iv) be satisfied. Then the nonlocal problem (1.1)-(1.2) has at least one solution π‘₯∈AC[0,1].

Proof. From Theorem 3.2 and the integral equation (3.2), we deduce that there exists at least one solution, π‘₯∈AC[0,1], of the integral equation (3.2).
To complete the proof, we prove that the integral equation (3.2) satisfies nonlocal problem (1.1)-(1.2).
Differentiating (3.2), we get 𝑑π‘₯𝑑𝑑=𝑓(𝑑,π‘₯(𝑑))∈𝐹(𝑑,π‘₯(𝑑)),a.e.π‘‘βˆˆ(0,1).(3.17) Letting 𝑑=πœ™(πœπ‘˜) in (3.2), we obtain π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜=ξ€Έξ€Έπ‘šξ“π‘˜=1π‘Žπ‘˜ξƒ©π΄π‘šξ“π‘˜=1π‘Žπ‘˜ξƒͺξ€œ+1πœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))π‘‘π‘ βˆ’π›Όπ΄π‘šξ“π‘˜=1π‘Žπ‘˜π‘›ξ“π‘—=1π‘π‘—ξ€œπœ“(πœ‚π‘—)0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.18) Also, letting 𝑑=πœ“(πœ‚π‘—) in (3.2), we obtain 𝛼𝑛𝑗=1𝑏𝑗π‘₯ξ€·πœ“ξ€·πœ‚π‘—ξ€Έξ€Έ=𝛼𝐴𝑛𝑗=1π‘π‘—π‘šξ“π‘˜=1π‘Žπ‘˜ξ€œπœ™(πœπ‘˜)0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠+𝛼𝑛𝑗=1𝑏𝑗1βˆ’π›Όπ΄π‘›ξ“π‘—=1𝑏𝑗ξƒͺξ€œπœ“(πœ‚π‘—)0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠.(3.19) And from (3.19) from (3.18), we obtain π‘šξ“π‘˜=1π‘Žπ‘˜π‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=𝛼𝑛𝑗=1𝑏𝑗π‘₯ξ€·πœ“ξ€·πœ‚π‘—.ξ€Έξ€Έ(3.20) This complete the proof of the equivalence between the nonlocal problem (1.1)-(1.2) and the integral equation (3.2).
This implies that there exists at least one absolutely continuous solution π‘₯∈AC[0,1] of the nonlocal problem (1.1)-(1.2).

4. Nonlocal Integral Condition

Let π‘₯∈[0,1] be a solution of the nonlocal problem (1.1)-(1.2). Let π‘Žπ‘˜=π‘‘π‘˜βˆ’π‘‘π‘˜βˆ’1,πœπ‘˜βˆˆ(π‘‘π‘˜βˆ’1,π‘‘π‘˜)βŠ‚(0,1). Also, let 𝑏𝑗=π‘‘π‘—βˆ’π‘‘π‘—βˆ’1,πœ‚π‘—βˆˆ(π‘‘π‘—βˆ’1,𝑑𝑗)βŠ‚(0,1). Then the nonlocal condition (1.2) will be π‘šξ“π‘˜=1ξ€·π‘‘π‘˜βˆ’π‘‘π‘˜βˆ’1ξ€Έπ‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=𝛼𝑛𝑗=1ξ€·π‘‘π‘—βˆ’π‘‘π‘—βˆ’1ξ€Έπ‘₯ξ€·πœ“ξ€·πœ‚π‘—.ξ€Έξ€Έ(4.1) From the continuity of the solution π‘₯ of the nonlocal condition (1.2) we obtain limπ‘šπ‘šβ†’βˆžξ“π‘˜=1ξ€·π‘‘π‘˜βˆ’π‘‘π‘˜βˆ’1ξ€Έπ‘₯ξ€·πœ™ξ€·πœπ‘˜ξ€Έξ€Έ=limπ‘›β†’βˆžπ›Όπ‘›ξ“π‘—=1ξ€·π‘‘π‘—βˆ’π‘‘π‘—βˆ’1ξ€Έπ‘₯ξ€·πœ“ξ€·πœ‚π‘—.ξ€Έξ€Έ(4.2) That is, the nonlocal condition (1.2) is transformed to the integral condition ξ€œ10ξ€œπ‘₯(πœ™(𝑠))𝑑𝑠=𝛼10π‘₯(πœ“(𝑠))𝑑𝑠,(4.3) and the solution of the integral equation (3.2) will be π‘₯(𝑑)=π΄βˆ—ξ‚΅ξ€œ10ξ€œ0πœ™(𝑠)ξ€œπ‘“(πœƒ,π‘₯(πœƒ))π‘‘πœƒπ‘‘π‘ βˆ’π›Ό10ξ€œ0πœ“(𝑠)ξ‚Ά+ξ€œπ‘“(πœƒ,π‘₯(πœƒ))π‘‘πœƒπ‘‘π‘ π‘‘0𝑓(𝑠,π‘₯(𝑠))𝑑𝑠,π΄βˆ—=(π›Όβˆ’1)βˆ’1.(4.4)

Now, we have the following theorem.

Theorem 4.1. Let assumptions (i)–(iv) of Theorem 3.2 be satisfied. Then the nonlocal problem with the integral condition 𝑑π‘₯(𝑑)𝑑𝑑=𝑓(𝑑,π‘₯(𝑑))∈𝐹(𝑑,π‘₯(𝑑)),fora.eξ€œ.π‘‘βˆˆ(0,1),10ξ€œπ‘₯(πœ™(𝑠))𝑑𝑠=𝛼10π‘₯(πœ“(𝑠))𝑑𝑠(4.5) has at least one solution π‘₯∈𝐴𝐢[0,1] represented by (4.4).