Research Article

Numerical Solutions of Odd Order Linear and Nonlinear Initial Value Problems Using a Shifted Jacobi Spectral Approximations

Table 6

Absolute error using SJC method for 𝑁 = 1 8 Example 6.6.

𝑥 𝛼 = 1 / 2 , 𝛽 = 1 / 2 𝛼 = 0 , 𝛽 = 0 𝛼 = 1 / 2 , 𝛽 = 1 / 2

0.0 0 1 . 9 9 1 1 0 1 8 6 . 9 3 8 1 0 1 8
0.1 1 . 6 6 5 1 0 1 6 3 . 0 3 7 1 0 1 7 2 . 6 3 8 1 0 1 6
0.2 4 . 9 9 6 1 0 1 6 4 . 3 5 3 1 0 1 7 3 . 5 3 8 1 0 1 6
0.3 1 . 6 6 5 1 0 1 6 1 . 9 0 8 1 0 1 7 3 . 7 6 4 1 0 1 6
0.4 1 . 6 6 5 1 0 1 6 6 . 4 1 8 1 0 1 7 3 . 1 2 2 1 0 1 7
0.5 2 . 7 7 5 1 0 1 7 5 . 2 0 4 1 0 1 7 6 . 9 3 8 1 0 1 8
0.6 0 8 . 3 2 6 1 0 1 7 5 . 2 0 4 1 0 1 7
0.7 1 . 1 1 0 1 0 1 6 1 . 1 1 0 1 0 1 6 7 . 6 3 2 1 0 1 7
0.8 1 . 6 6 5 1 0 1 6 1 . 1 1 0 1 0 1 6 4 . 1 6 3 1 0 1 7
0.9 2 . 7 7 5 1 0 1 6 1 . 1 1 0 1 0 1 6 1 . 3 8 7 1 0 1 6
1.0 5 . 5 5 1 1 0 1 6 1 . 1 1 0 1 0 1 6 2 . 2 2 0 1 0 1 6