Research Article

The Flattened Aggregate Constraint Homotopy Method for Nonlinear Programming Problems with Many Nonlinear Constraints

Algorithm 1

The FACH-S-N procedure.
Input  Give , , , , and ; starting point ; initial steplength , steplength
  contraction factor , steplength expansion factor ; tracking tolerances and for correction. Set
   , , , , .
Step  1. The predictor step.
Step  1.1. Compute the predictor direction.
    If , compute by solving
                   ,
    where , set the predictor direction ;
    else, compute the predictor direction , the angle between and :
               .
Step  1.2. Adjust the steplength.
      Adjust the steplength as follows:
      if the predictor point is infeasible, set , ;
      else if the corrector step fails or , set , ;
      else if , set , ;
      else if , set , ;
      else if , set ,
      if , set , else, set ;
      else, set ,
      if , set , else, set .
     If , stop the algorithm with an error flag.
Step  1.3. Compute the predictor point and check its feasibility.
     Compute the predictor point
                  .
  If or ,
   the predictor point is infeasible, goto Step  1.2;
  else if ,
   adjust the steplength , compute the point , if , goto Step  3, else, the predictor
   point is infeasible, goto Step  1.2;
  else, goto Step  2.
Step  2. The corrector step.
  Set .
  Repeat
   If , set , , , , , the corrector step fails, goto Step  1.2.
   Compute the Newton step by solving
              ,
   the corrector point
              ;
   set .
   If or ,
     set , , , , , the corrector step fails, goto Step  1.2;
   else if ,
     compute the point by a damping Newton step, set , if , goto Step  3,
     else, set , , , , the corrector step fails, goto Step  1.2.
 Until and .
 If , return with , stop the algorithm; else, set , , goto Step  1.
Step  3. The end game.
  Set .
  Repeat
   If or for , or , set , , ,
    , , , the corrector step fails, goto Step  1.2.
   Compute the Newton step by solving , the corrector point
                   ;
   set .             
 Until and .             
 Set , return with , stop the algorithm.