Research Article

Determinants of Livelihood Diversification among Households in the Sub-Saharan Town of Merawi, Ethiopia

Table 2

Summary of multinomial logistic regression model analysis.

VariablesModerate livelihood diversification (1) vs. no livelihood diversification (0)High livelihood diversification (2) vs. no livelihood diversification (0)
CoefSEWaldCoefSEWald

Intercept−5.0061.6019.777−4.5421.5578.504
Irrgatin = income from irrigation2.9020.3170.0122.9020.3170.012
Laown = land ownership120.5720.40787900.538121.1220.000
Totincome = total annual cash income0.0000.0008.4390.0000.0007.862
Tocaposs = total cattle possession0.3292.9020.0003.62612.9021.031
[Priflu = 1(yes)] = price fluctuation problem2.8991.3104.8961.6291.2751.633
Laown irrgatin0.0020.2600.0000.0020.2600.000
[Priflu = 1(yes)] totincome0.0000.0009.2100.0000.0008.924
[Priflu = 2(no)] totincome0.0000.00020.3200.0000.0000.075
[Priflu = 1(yes)]tocaposs = total cattle possession12.8920.09717697.08613.2150.000
[Priflu = 2(no)] tocaposs1.5345936.1830.00019.1134439.2620.000

Note: pseudo-R2 = .570 (Cox and Snell), .685 (Nagelkerke). Model χ2 (22) = 278.53,  < .001. ,  < 0.1, ,  < 0.05, and ,  < .01, respectively. Source: own survey, 2019.