Research Article
[Retracted] Machine Learning Approaches for Developing Land Cover Mapping
Table 4
Precision, recall, and F1-score for the original and the best reduced dataset using RF classifier.
| Class | Precision | Recall | F1-score | Original dataset | Reduced (CFS) | Original dataset | Reduced (CFS) | Original dataset | Reduced (CFS) |
| Concrete | 0.875 | 0.878 | 0.828 | 0.849 | 0.851 | 0.863 | Shadow | 0.875 | 0.930 | 0.933 | 0.889 | 0.903 | 0.909 | Tree | 0.820 | 0.880 | 0.920 | 0.910 | 0.868 | 0.895 | Asphalt | 0.909 | 0.820 | 0.889 | 0.911 | 0.899 | 0.863 | Building | 0.810 | 0.825 | 0.876 | 0.876 | 0.842 | 0.850 | Grass | 0.892 | 0.900 | 0.795 | 0.867 | 0.841 | 0.883 | Pool | 1.00 | 1.00 | 0.714 | 0.786 | 0.833 | 0.880 | Car | 0.818 | 0.895 | 0.857 | 0.810 | 0.837 | 0.850 | Soil | 0.813 | 0.789 | 0.650 | 0.750 | 0.717 | 0.769 | W. avg. | 0.857 | 0.872 | 0.854 | 0.870 | 0.829 | 0.870 |
|
|