Research Article
[Retracted] An Effective Approach for Human Activity Classification Using Feature Fusion and Machine Learning Methods
| Method | Classes | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5 | | | Weizmann | KTH | Weizmann | KTH | Weizmann | KTH | Weizmann | KTH | Weizmann | KTH |
| Linear-SVM | C1 C2 C3 C4 C5 C6 | 1.00 0.99 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.98 1.00 | 1.00 0.99 1.00 0.99 1.00 | 1.00 0.98 1.00 0.99 1.00 1.00 | 1.00 0.98 0.99 0.98 1.00 | 1.00 0.90 1.00 0.98 1.00 1.00 | Cubic-SVM | C1 C2 C3 C4 C5 C6 | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 0.99 1.00 | 1.00 0.99 1.00 0.99 1.00 | 1.00 0.98 1.00 0.99 0.99 1.00 | 1.00 0.98 0.99 0.98 1.00 | 1.00 0.90 1.00 0.98 1.00 0.99 | Complex tree | C1 C2 C3 C4 C5 C6 | 0.98 0.87 0.94 0.90 0.97 | 1.00 0.98 1.00 0.99 0.98 1.00 | 0.99 0.89 0.93 0.88 0.95 | 1.00 0.96 1.00 0.98 0.96 1.00 | 0.98 0.85 0.94 0.90 0.97 | 1.00 0.98 1.00 0.99 0.98 1.00 | 0.98 0.88 0.94 0.88 0.96 | 0.99 0.99 0.99 0.99 1.00 1.00 | 0.98 0.87 0.94 0.87 0.96 | 0.99 0.99 0.99 0.96 1.00 1.00 | Fine-KNN | C1 C2 C3 C4 C5 C6 | 1.00 0.99 0.99 0.99 1.00 | 0.98 1.00 0.98 0.81 1.00 0.98 | 0.93 0.87 0.91 0.92 1.00 | 0.97 1.00 0.99 0.69 1.00 0.96 | 0.79 0.63 0.71 0.76 0.99 | 0.98 0.99 0.98 0.64 1.00 0.94 | 0.69 0.51 0.65 0.61 0.89 | 0.95 0.88 0.91 0.61 0.76 0.91 | 0.60 0.50 0.62 0.51 0.71 | 0.75 0.54 0.76 0.50 0.54 0.81 | Subspace-KNN | C1 C2 C3 C4 C5 C6 | 1.00 0.98 1.00 0.99 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 0.98 0.99 0.99 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 0.98 1.00 0.99 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 0.98 0.99 0.99 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 0.98 1.00 0.99 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 |
|
|