Research Article

A Deep Learning Model for Stroke Patients’ Motor Function Prediction

Table 2

Parameter of EEG-DenseNet: T = temporal filter, DP = depth, P = point filter. K is the count of motor imagery units.

StructureLayerFiltersSizeOutputActivation

1Input: input layer
Reshape: first convolutional layer (CL)
Second CLT(1, 64)Linear activation function
NormalizationT× M × S
Depth CL(C, 1)Linear activation function
Batch sizing
Nonlinear activation layerReLu
Max pooling(1, 4)(DP × T) ×1 × S/4
Dropout layer (one out of four)Probability or
2Separable CL(1, 16)Linear activation function
Batch sizing
Nonlinear activation layerReLu
Max pooling(1, 6)
Failure layer or probability =0.6
Flattening out
ClassifierDense classified fully connectedSoftmax