Research Article
A Deep Learning Model for Stroke Patients’ Motor Function Prediction
Table 2
Parameter of EEG-DenseNet: T = temporal filter, DP = depth, P = point filter. K is the count of motor imagery units.
| Structure | Layer | Filters | Size | Output | Activation |
| 1 | Input: input layer | | | | | Reshape: first convolutional layer (CL) | | | | | Second CL | T | (1, 64) | | Linear activation function | Normalization | | | T× M × S | | Depth CL | | (C, 1) | | Linear activation function | Batch sizing | | | | | Nonlinear activation layer | | | | ReLu | Max pooling | | (1, 4) | (DP × T) ×1 × S/4 | | Dropout layer (one out of four) | | Probability or | | | 2 | Separable CL | | (1, 16) | | Linear activation function | | Batch sizing | | | | | Nonlinear activation layer | | | | ReLu | Max pooling | | (1, 6) | | | Failure layer | | or probability =0.6 | | | Flattening out | | | | | Classifier | Dense classified fully connected | | | | Softmax |
|
|