Research Article

High-Performance Method for Brain Tumor Feature Extraction in MRI Using Complex Network

Table 1

Summary of machine learning-based brain tumor classification techniques.

StudiesDatasetFeature extraction methodNumber of featuresClassifierTumor typesPerformance

Sarkar et al. [8]Local dataset:
60 MRI T2 images
Genetic algorithm13 featuresSVMBenign,
malignant
SPE 100%, SEN 98%, ACC 98.30%

Hamid et al. [9]Local dataset:
60 MRI T2- FLAIR images
GLCM5 featuresSVMBenign,
malignant
ACC 95%

Ansari et al. [10]Local dataset:
200 MRI
GLCM and DWT12 featuresSVMBenign,
malignant
ACC 98.91%

Li et al. [11]Local dataset:
135 MRI T1 and T2 images
Gabor transform, texture, and DWT80 best-ranked featuresSVMBenign,
malignant
SPE 80%, SEN 93%, ACC 88%

Alves et al. [12]Local dataset:
67 patients
T1, T1C+, T2, DWI, T2-FLAIR
Genetic algorithm, GLCM, GLRL and DWTFive best-ranked featuresSVM
kNN
RF
Brain tumors and inflammatory lesionsSPE 83.70%, SEN 91.20%, ACC 82.70%

Kang et al. [13]Local dataset: 6,517 MRICNNTop-3 deep featuresSVM
kNN
NB
RF
Benign,
malignant
SVM: ACC 98.50%
kNN: ACC 98.50%
NB: ACC 90.20%
RF: ACC 97.17%

Jena et al. [14]BraTS 2017 and 2019Genetic algorithm, GLCM, GLRL and DWT471 featuresSVM
kNN
RF
LGG, HGGSVM: ACC 94.25%
kNN: ACC 87.88%
RF: ACC 97%

Nanmaran et al. [15]Local dataset: 200 MRIDiscrete cosine transform6 featuresSVM
kNN
Benign,
malignant
SVM: ACC 96.8%
kNN: ACC 91.75%

Susanto et al. [16]BraTS 2019GLCM and DWT16 featuresSVMLGG, HGGSVM: ACC 98.65%

Aamir et al. [17]Local dataset: 3,064 MRIMultiple deep neural networksDeep featuresSVMBenign,
malignant, pituitary
SVM: ACC 98.98%

GLCM, gray-level co-occurrence matrix; LGG, low-grade glioma; HGG, high-grade glioma.