Research Article

Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming

Table 2

Traffic volume data of road sections.

Section IDCycleRickshaw/rehriScooter/M-cycleCar/jeep/autoBus/truck/tractor/trollyCartTotalESA in the year 2013 (in millions)

UR011981183503711122211710.281
16.9103031.79.61.8100
UR022347355228533511820.072
19.86.246.724.12.80.4100
UR0315214134128578510020.112
15.214.0734.0328.447.80.5100
UR04108182511151035050.194
21.73.549.722.71.90.6100
UR0511069272317120129000.424
12.27.6630.235.213.31.44100
UR0625118054726533412800.144
201442212.60.4100
UR072672015845351291517310.230
15.411.633.7317.40.9100
UR08191207651880425323570.127
8.18.827.6137.3418.030.12100
UR0917115847033829211680.225
15144028.42.50.1100
UR104074591104655—20400.129
2022.554.13.20.2—100
UR11583247705864438528420.166
2192529.8150.2100
UR12464358722878341224680.036
1914.52935.61.40.5100
UR1340492548347196515920.902
25.45.834.421.812.30.3100
UR1455434912751106112834040.115
16.310.237.532.53.30.2100
UR15381319142711797142040400.928
9.47.635.229.217.61100
UR163711805801442312800.003
291445.311.30.150.25100