Development of Regression Models considering Time-Lag and Aerosols for Predicting Heating Loads in Buildings
Table 4
ANOVA for a DOE small building depending on time-lag.
ANOVAa
Model
Sum of squares
df
Mean square
F
Sig.
Time-lag0
Regression
452150586586186300.000
11
41104598780562392.000
737.844
0.000b
Residual
1133122624135237120.000
20,340
55709076899470.850
—
—
Total
1585273210721423360.000
20,351
—
—
—
Time-lag1
Regression
466270598690733180.000
11
42388236244612096.000
770.449
0.000b
Residual
1119001925868610430.000
20,339
55017548840582.650
—
—
Total
1585272524559343620.000
20,350
—
—
—
Time-lag2
Regression
555346313497669060.000
11
50486028499788096.000
996.953
0.000b
Residual
1029922597401856130.000
20,338
50640308653842.860
—
—
Total
1585268910899525120.000
20,349
—
—
—
aDependent variable: heating load of a DOE small office building; bpredictors: (constant), visibility, diffuse radiation, atmospheric station pressure, wind speed, total sky cover, dry bulb temperatures, direct normal radiation, relative humidity, global horizontal radiation, horizontal infrared radiation, and dew point temperatures.