Research Article

Development of Regression Models considering Time-Lag and Aerosols for Predicting Heating Loads in Buildings

Table 4

ANOVA for a DOE small building depending on time-lag.

ANOVAa
ModelSum of squaresdfMean squareFSig.

Time-lag0Regression452150586586186300.0001141104598780562392.000737.8440.000b
Residual1133122624135237120.00020,34055709076899470.850
Total1585273210721423360.00020,351

Time-lag1Regression466270598690733180.0001142388236244612096.000770.4490.000b
Residual1119001925868610430.00020,33955017548840582.650
Total1585272524559343620.00020,350

Time-lag2Regression555346313497669060.0001150486028499788096.000996.9530.000b
Residual1029922597401856130.00020,33850640308653842.860
Total1585268910899525120.00020,349

aDependent variable: heating load of a DOE small office building; bpredictors: (constant), visibility, diffuse radiation, atmospheric station pressure, wind speed, total sky cover, dry bulb temperatures, direct normal radiation, relative humidity, global horizontal radiation, horizontal infrared radiation, and dew point temperatures.