Research Article

Development of Regression Models considering Time-Lag and Aerosols for Predicting Heating Loads in Buildings

Table 7

ANOVA for a DOE small office building depending on different models.

ANOVAa
ModelSum of squaresdfMean squareFSig.

Modified modelbRegression555346313497669060.0001150486028499788096.000996.9530.000b
Residual1029922597401856130.00020,33850640308653842.860
Total1585268910899525120.00020,349

New modelcRegression14670632319938900.00081833829039992363.000130.9240.000c
Residual67863211318381720.000484514006854761275.896
Total82533843638320624.0004853

Limited modeldRegression417909494247049020.000669651582374508168.0001213.7840.000d
Residual1167359416652476160.00020,34357383838010739.625
Total1585268910899525120.00020,349

aDependent variable: heating load of a DOE small office building; bpredictors: (constant), visibility, diffuse radiation, atmospheric station pressure, wind speed, total sky cover, dry bulb temperatures, direct normal radiation, relative humidity, global horizontal radiation, horizontal infrared radiation, and dew point temperatures; cpredictors: (constant), precipitable water, direct normal radiation, total sky cover, AOD, relative humidity, atmospheric station pressure, diffuse radiation, dew point temperatures, global horizontal radiation, and horizontal infrared radiation; dpredictors: (constant), wind speed, dry bulb temperatures, relative humidity, global horizontal radiation, atmospheric station pressure, and dew point temperatures.