Research Article
Prediction of the Void Ratio Parameter in Mineral Tailings Using Gene Expression Programming
Table 3
Performance of the GEP models in predicting void ratio for training and testing datasets.
| Models | Train | Test | MAE | RMSE | R2 | MAE | RMSE | R2 |
| Model 1 | 0.086 | 0.122 | 0.93 | 0.121 | 0.24 | 0.92 | Model 2 | 0.097 | 0.133 | 0.93 | 0.196 | 0.543 | 0.90 | Model 3 | 0.09 | 0.117 | 0.95 | 0.127 | 0.189 | 0.92 | Model 4 | 0.143 | 0.183 | 0.72 | 0.19 | 0.388 | 0.83 | Model 5 | 0.18 | 0.287 | 0.31 | 0.286 | 0.534 | 0.55 | Model 6 | 0.091 | 0.118 | 0.92 | 0.136 | 0.258 | 0.92 | Model 7 | 0.076 | 0.104 | 0.96 | 0.111 | 0.17 | 0.94 | Model 8 | 0.093 | 0.127 | 0.93 | 0.125 | 0.234 | 0.91 |
|
|