Research Article

Short-Term Traffic Flow Prediction of Expressway: A Hybrid Method Based on Singular Spectrum Analysis Decomposition

Table 1

Performance comparison of prediction models (Guiyang North Station).

Time interval (min)ModelsMAEMAPERMSEAccuracyR2

5ARIMA6.46770.23949.03270.85740.9399
SVR6.63240.17789.2730.85690.9369
BP7.66230.367110.11350.8440.9250
KNN8.89140.283612.22650.81160.8905
LSTM6.82880.22619.3640.85470.9348
SSA-LSTM-SVR4.73610.12846.8210.91060.9421
10ARIMA11.12000.1999915.63000.87630.9541
SVR10.76350.176515.3880.88120.9559
BP11.21430.216115.69440.87880.9541
KNN14.64990.226120.44010.84220.9222
LSTM11.29550.186615.94690.87680.9525
SSA-LSTM-SVR8.83460.120613.24180.93850.9623
15ARIMA15.49650.197321.67910.88530.9603
SVR15.93330.158822.160.88570.9587
BP21.46990.324427.80680.85660.9351
KNN21.40680.217930.22270.84410.9238
LSTM16.18340.191322.20710.88550.9588
SSA-LSTM-SVR10.19420.137616.90090.93200.9758
30ARIMA30.60370.211842.11650.88850.9622
SVR31.10610.140243.54840.88770.9599
BP48.40230.510359.79060.84570.9246
KNN39.34150.254354.75510.85770.9367
LSTM38.12730.371949.21250.87240.9489
SSA-LSTM-SVR25.28860.127333.9850.93240.9502
45ARIMA47.37470.191166.91070.88180.9573
SVR47.87730.149668.86850.88120.9552
BP73.5540.411894.39180.8370.9159
KNN57.82640.201678.21230.86340.9421
LSTM69.9180.282497.73820.82970.9093
SSA-LSTM-SVR42.43570.086456.91490.93090.9528
60ARIMA74.28520.2414104.8100.86120.9410
SVR77.62230.1775113.90670.85250.9309
BP125.18460.5853157.72380.79520.8675
KNN85.39780.2353114.61190.84990.9305
LSTM117.97210.3366169.380.7780.847
SSA-LSTM-SVR68.22090.124693.50780.91070.9493