Research Article
Short-Term Traffic Flow Prediction of Expressway: A Hybrid Method Based on Singular Spectrum Analysis Decomposition
Table 1
Performance comparison of prediction models (Guiyang North Station).
| Time interval (min) | Models | MAE | MAPE | RMSE | Accuracy | R2 |
| 5 | ARIMA | 6.4677 | 0.2394 | 9.0327 | 0.8574 | 0.9399 | SVR | 6.6324 | 0.1778 | 9.273 | 0.8569 | 0.9369 | BP | 7.6623 | 0.3671 | 10.1135 | 0.844 | 0.9250 | KNN | 8.8914 | 0.2836 | 12.2265 | 0.8116 | 0.8905 | LSTM | 6.8288 | 0.2261 | 9.364 | 0.8547 | 0.9348 | SSA-LSTM-SVR | 4.7361 | 0.1284 | 6.821 | 0.9106 | 0.9421 | 10 | ARIMA | 11.1200 | 0.19999 | 15.6300 | 0.8763 | 0.9541 | SVR | 10.7635 | 0.1765 | 15.388 | 0.8812 | 0.9559 | BP | 11.2143 | 0.2161 | 15.6944 | 0.8788 | 0.9541 | KNN | 14.6499 | 0.2261 | 20.4401 | 0.8422 | 0.9222 | LSTM | 11.2955 | 0.1866 | 15.9469 | 0.8768 | 0.9525 | SSA-LSTM-SVR | 8.8346 | 0.1206 | 13.2418 | 0.9385 | 0.9623 | 15 | ARIMA | 15.4965 | 0.1973 | 21.6791 | 0.8853 | 0.9603 | SVR | 15.9333 | 0.1588 | 22.16 | 0.8857 | 0.9587 | BP | 21.4699 | 0.3244 | 27.8068 | 0.8566 | 0.9351 | KNN | 21.4068 | 0.2179 | 30.2227 | 0.8441 | 0.9238 | LSTM | 16.1834 | 0.1913 | 22.2071 | 0.8855 | 0.9588 | SSA-LSTM-SVR | 10.1942 | 0.1376 | 16.9009 | 0.9320 | 0.9758 | 30 | ARIMA | 30.6037 | 0.2118 | 42.1165 | 0.8885 | 0.9622 | SVR | 31.1061 | 0.1402 | 43.5484 | 0.8877 | 0.9599 | BP | 48.4023 | 0.5103 | 59.7906 | 0.8457 | 0.9246 | KNN | 39.3415 | 0.2543 | 54.7551 | 0.8577 | 0.9367 | LSTM | 38.1273 | 0.3719 | 49.2125 | 0.8724 | 0.9489 | SSA-LSTM-SVR | 25.2886 | 0.1273 | 33.985 | 0.9324 | 0.9502 | 45 | ARIMA | 47.3747 | 0.1911 | 66.9107 | 0.8818 | 0.9573 | SVR | 47.8773 | 0.1496 | 68.8685 | 0.8812 | 0.9552 | BP | 73.554 | 0.4118 | 94.3918 | 0.837 | 0.9159 | KNN | 57.8264 | 0.2016 | 78.2123 | 0.8634 | 0.9421 | LSTM | 69.918 | 0.2824 | 97.7382 | 0.8297 | 0.9093 | SSA-LSTM-SVR | 42.4357 | 0.0864 | 56.9149 | 0.9309 | 0.9528 | 60 | ARIMA | 74.2852 | 0.2414 | 104.810 | 0.8612 | 0.9410 | SVR | 77.6223 | 0.1775 | 113.9067 | 0.8525 | 0.9309 | BP | 125.1846 | 0.5853 | 157.7238 | 0.7952 | 0.8675 | KNN | 85.3978 | 0.2353 | 114.6119 | 0.8499 | 0.9305 | LSTM | 117.9721 | 0.3366 | 169.38 | 0.778 | 0.847 | SSA-LSTM-SVR | 68.2209 | 0.1246 | 93.5078 | 0.9107 | 0.9493 |
|
|