Research Article
Identification of Civil Infrastructure Damage Using Ensemble Transfer Learning Model
Table 3
Structure of custom CNN model.
| | Layer | Layer type | No. of nodes | Kernel size | Activation | Dropout rate |
| | 0 | Input shape | 64 × 64 | — | — | — | | 1 | Conv1 | 16 | 3 × 3 | ReLU | — | | 2 | Conv2 | 16 | 3 × 3 | ReLU | — | | 3 | Max-pool | — | 2 × 2 | — | 0.2 | | 4 | Conv3 | 32 | 3 × 3 | ReLU | — | | 5 | Conv4 | 32 | 3 × 3 | ReLU | — | | 6 | Max-pool | — | 2 × 2 | — | 0.2 | | 7 | Conv5 | 64 | 3 × 3 | ReLU | — | | 8 | Conv6 | 64 | 3 × 3 | ReLU | — | | 9 | Max-pool | — | 2 × 2 | — | — | | 10 | FC | 512 | — | ReLU | — | | 11 | Output | 5 | — | Softmax | — |
|
|