Research Article

A New Artificial Neural Network Model for the Prediction of the Effect of Molar Ratios on Compressive Strength of Fly Ash-Slag Geopolymer Mortar

Table 7

Predicted inputs corresponding to mortar compressive strength fc >80 MPa.

#%Na2O%(SiO2)L%SiO2%Al2O3%CaOfc (MPa)

10.130.110.490.200.0783.53
20.130.140.520.150.0684.69
30.110.130.470.240.0582.65
40.130.120.460.230.0580.58
50.120.110.460.250.0680.88
60.130.120.510.150.0882.41
70.100.140.490.210.0680.53
80.120.130.490.200.0681.16
90.120.110.450.260.0680.07
100.150.120.510.160.0684.15
110.130.120.500.190.0682.86
120.150.100.480.200.0783.80
130.120.130.490.210.0682.08
140.120.130.500.190.0683.43
150.130.120.480.210.0682.24
160.140.120.500.180.0683.74
170.130.100.460.250.0780.42
180.110.140.500.190.0781.04
190.150.110.500.170.0681.50
200.140.100.460.230.0684.00