Research Article
Application of Extreme Gradient Boosting Based on Grey Relation Analysis for Prediction of Compressive Strength of Concrete
Table 5
Setting parameters of ANN, GA-ANN, and XGBoost.
| | Structural parameters | ANNs | GA-ANNs | Hyperparameters | XGBoost |
| | Input layer nodes | 6 | 6 | Maximum depth | 6 | | Hidden layers | 2 | 2 | Minimum child weight | 1 | | Hidden layer nodes | 80 (first) 60 (second) | 80 (first) 60 (second) | Gamma | 0 | | Output layer nodes | 1 | 1 | Subsample | 1 | | Training parameters | ā | ā | Colsample by tree | 1 | | Epoch times | 10 | 10 | Regularization alpha | 0 | | Initial learning rate | 0.01 | 0.01 | Initial learning rate | 0.01 | | Maximum iterations | 100 | 100 | Number of iterations | 30 |
|
|