Research Article

Prediction of Transverse Reinforcement of RC Columns Using Machine Learning Techniques

Table 2

Permutation feature importance of 12 features.

Model

OLS0.640.210.240.010.110.050.02<0.01<0.010.010.040.03
Lasso0.640.210.240.010.110.050.02<0.01<0.010.010.040.03
Ridge0.590.180.230.010.090.050.01<0.01<0.01<0.010.020.03
KNN0.430.360.280.160.120.190.180.190.120.110.110.20
SVR0.931.190.630.840.250.390.410.320.180.320.140.18
MLP0.660.470.400.190.160.230.110.130.080.090.100.14
DT1.230.400.370.620.25<0.010.090.230.110.090.05<0.01
RF0.820.220.190.210.060.010.050.080.030.020.020.01
AdaBoost0.470.080.120.050.040.020.020.010.010.010.020.01
XGBoost0.730.340.290.320.140.100.050.050.040.030.02<0.01
LightGBM0.380.380.230.120.130.040.070.040.020.040.04<0.01
CatBoost0.450.360.200.130.110.070.060.050.040.030.030.01
Mean0.660.370.290.220.130.100.090.090.060.060.050.05