Research Article
Prediction of Transverse Reinforcement of RC Columns Using Machine Learning Techniques
Table 3
Performance measure of the developed models.
| Model | Training set | Testing set | R2 | RMSE | MAE | WAPE | R2 | RMSE | MAE | WAPE |
| OLS | 0.534 | 0.365 | 0.268 | 0.384 | 0.603 | 0.423 | 0.297 | 0.391 | Lasso | 0.533 | 0.366 | 0.267 | 0.384 | 0.595 | 0.427 | 0.300 | 0.395 | Ridge | 0.534 | 0.365 | 0.268 | 0.384 | 0.603 | 0.423 | 0.297 | 0.391 | KNN | 1.000 | <0.001 | <0.001 | <0.001 | 0.775 | 0.318 | 0.194 | 0.256 | SVR | 0.941 | 0.129 | 0.075 | 0.108 | 0.733 | 0.347 | 0.233 | 0.307 | MLP | 0.738 | 0.274 | 0.191 | 0.274 | 0.719 | 0.356 | 0.233 | 0.308 | DT | 1.000 | 5.736 | 7.671 | 1.100 | 0.772 | 0.32 | 0.182 | 0.241 | RF | 0.951 | 0.118 | 0.079 | 0.114 | 0.838 | 0.27 | 0.185 | 0.244 | AdaBoost | 0.638 | 0.322 | 0.280 | 0.402 | 0.717 | 0.356 | 0.299 | 0.395 | XGBoost | 0.999 | 0.006 | 0.004 | 0.006 | 0.873 | 0.239 | 0.161 | 0.212 | LightGBM | 0.977 | 0.08 | 0.053 | 0.076 | 0.817 | 0.286 | 0.192 | 0.254 | CatBoost | 0.978 | 0.078 | 0.057 | 0.082 | 0.842 | 0.266 | 0.179 | 0.237 |
|
|