Research Article
Machine Learning-Based Probabilistic Seismic Demand Model of Continuous Girder Bridges
Table 2
Coefficients of determination of traditional and various ML demand models.
| | Methods | | | | | | | | |
| Traditional method | Only PGV | 0.81 | 0.80 | 0.81 | 0.79 | 0.81 | 0.80 | 0.80 | 0.80 | | Only PSV | 0.81 | 0.81 | 0.82 | 0.80 | 0.82 | 0.82 | 0.81 | 0.82 | Linear regression | RR | 0.86 | 0.85 | 0.86 | 0.85 | 0.86 | 0.86 | 0.86 | 0.86 | | LR | 0.47 | 0.31 | 0.46 | 0.31 | 0.46 | 0.40 | 0.44 | 0.40 | | EN | 0.65 | 0.57 | 0.63 | 0.59 | 0.66 | 0.61 | 0.65 | 0.62 | | SVR | 0.88 | 0.87 | 0.88 | 0.87 | 0.88 | 0.87 | 0.87 | 0.87 | Bayesian regression | BRR | 0.86 | 0.85 | 0.86 | 0.86 | 0.86 | 0.86 | 0.85 | 0.86 | | ARD | 0.85 | 0.85 | 0.86 | 0.85 | 0.86 | 0.86 | 0.86 | 0.84 | Tree-based model | RF | 0.89 | 0.88 | 0.89 | 0.87 | 0.88 | 0.87 | 0.88 | 0.88 | | GBDT | 0.88 | 0.86 | 0.89 | 0.86 | 0.88 | 0.86 | 0.87 | 0.87 | | AdaBoost | 0.87 | 0.86 | 0.87 | 0.86 | 0.88 | 0.85 | 0.87 | 0.87 | | LightGBM | 0.89 | 0.86 | 0.88 | 0.86 | 0.88 | 0.86 | 0.87 | 0.85 |
|
|