Research Article

Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)

Algorithm 1

The ODFP optimization algorithm.
Randomly initialize a population Pop=
// PS denotes the number of population member
Define LB and UB
// LB and UB are lower and upper boundaries, respectively
Define the objective cost function CF
Calculate the objective cost function of the population: PopF
Specify the probability of population jumping Jr
Define the maximum number of function calls: MNFC
For i = 1 : PS
, d = 1, 2, …, D
//  D is the number of searched parameters
//  Xi,op denotes the opposition of Xi
 Compute CF(Xop)
If (CF(Xop) < CF(X))
  Pop [X] = Pop [Xop]
  PopF[X] = PopF[Xop]
End If
End For
Identify the best solution Xbest
Identify the best cost function CF(Xbest)
Count = 0 // counting number of function calls
while Count < MNFC
For i = 1 : PS
  Generate rU(0,1)
  If r < p // Perform global search
   Generate a trial solution via
   
  Else // Perform local search
   Perform mutation operation
   
   Perform crossover operation
   
  End If
  Update Xbest
End For
Generate θU(0,1)
If θ < Jr
For i = 1 : PS
  , d = 1, 2, …, D
  Compute CF(Xop)
  If (CF(Xop) < CF(X))
   Pop [X] = Pop [Xop]
   PopF[X] = PopF[Xop]
  End If
End For
End If
Update Count
Update Xbest
Update CF(Xbest)
End For
Return Xbest