Research Article

Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR)

Table 2

Prediction results of a typical run.

Data sampleX1X2X3X4X5X6X7X8X9X10Actual YPredicted Y

14003.458.000.102.953.603.1014.5011.557.461344.001227.31
24003.555.360.003.253.413.2512.168.916.71930.001070.45
33003.405.290.003.403.543.4512.098.696.76661.60623.91
43003.405.240.003.403.463.4212.048.646.75559.80588.34
54003.407.400.003.403.613.4114.2010.807.301088.801057.05
64004.358.001.022.053.472.0515.4213.377.641473.001298.75
74003.857.300.002.953.683.5814.1011.157.081440.001411.29
83003.405.200.003.403.453.4512.008.606.73559.80600.21
94003.407.330.003.403.553.4214.1310.737.281094.251063.49
103003.405.200.003.403.423.4212.008.606.73610.70598.24
114004.358.001.082.053.542.0615.4813.437.671395.001268.95
123003.405.200.003.403.433.4312.008.606.73610.70599.40
134003.407.350.003.403.573.4214.1510.757.291119.701051.84
144004.358.001.202.053.622.0215.6013.557.741119.701121.77
153003.405.300.003.403.543.4412.108.706.76661.60622.50
164003.458.000.202.953.502.9014.6011.657.521017.901086.64
174003.407.300.003.403.503.4014.1010.707.28900.001122.16
183003.405.220.003.403.443.4212.028.626.74610.70593.56
194004.358.001.052.053.502.0515.4513.407.661344.001299.53
204004.358.000.982.053.482.1015.3813.337.621224.801334.41
213003.405.200.003.403.423.4212.008.606.73610.70598.24
223003.405.230.003.403.443.4112.038.636.74610.70590.72
233003.405.300.003.403.523.4212.108.706.76508.90599.40
243003.405.180.003.403.383.4011.988.586.73559.80593.72
254004.358.001.052.053.552.1015.4513.407.661224.801292.04
264003.407.400.003.403.613.4114.2010.807.301152.001057.05
274004.457.210.002.353.412.4014.0111.666.831318.001365.13
284003.458.000.152.953.643.0914.5511.607.491344.001212.29
293003.405.200.003.403.453.4512.008.606.73610.70600.21
303003.405.250.003.403.483.4312.058.656.75508.90588.13
314004.358.000.802.053.452.2515.2013.157.521392.001383.83
324003.407.240.003.403.443.4014.0410.647.261395.001121.48
334004.358.001.012.053.462.0515.4113.367.641473.001294.71
344004.358.001.062.053.562.1015.4613.417.661224.801277.92
353003.405.250.003.403.483.4312.058.656.75610.70588.13
364003.857.600.002.953.673.2714.4011.457.151425.001410.53
373003.405.220.003.403.453.4312.028.626.74559.80593.89
384004.358.000.942.053.492.1515.3413.297.601395.001362.40
393003.405.220.003.403.443.4212.028.626.74610.70593.56
404005.406.300.002.153.521.0613.1014.705.501056.00968.29
414003.407.260.003.403.463.4014.0610.667.271152.001143.42
424004.358.000.902.053.382.0815.3013.257.581395.001319.21
434003.458.000.062.953.412.9514.4611.517.431240.001248.78
444004.358.001.052.053.502.0515.4513.407.661152.001299.45
453003.405.250.003.403.493.4412.058.656.75661.60590.77
464004.358.000.952.053.412.0615.3513.307.601323.201283.45
474004.358.000.902.053.402.1015.3013.257.581395.001322.17