Research Article

Firefly Algorithm-Based Artificial Neural Network to Predict the Shear Strength in FRP-Reinforced Concrete Beams

Table 1

Descriptive statistics of the experimental data [7].

(MPa)ρf (%)Ef (GPa)a/d (mm)d (mm)Vcf (kN)

Mean41.571.07583003.32284.40336.7992.97
Standard deviation13.080.6442.471.44190.08210.90112.77
Min22.700.1823.201.0089.00104.009.80
Max88.303.43192.0012.501000.001097.00953.00

Here,  = concrete compressive strength; ρf = FRP longitudinal reinforcement ratio; Ef = FRP bar modulus of elasticity; a/d = shear span-to-depth ratio;  = web thickness; d = effective depth; and Vcf = shear strength of the concrete beam.