Research Article
Evaluation of Hybrid Soft Computing Model’s Performance in Estimating Wave Height
Table 1
Results of different modeling for the Hambantota Port at daily scales.
| | Input | Output | Case study | Stage | Model | Efficiency criteria | P-value | | NSE | MAE | RMSE | R |
| | Ut | Hst | Hambantota Port | Train | ANN | 0.74 | 0.24 | 0.06 | 0.37 | 0.017 | | Test | 0.66 | 0.27 | 0.12 | 0.34 | 0.021 | | Sanmen Bay | Train | 0.70 | 0.26 | 0.08 | 0.34 | 0.024 | | Test | 0.63 | 0.31 | 0.14 | 0.30 | 0.037 | | Hambantota Port | Train | WANN | 0.93 | 0.18 | 0.01 | 0.43 | <0.001 | | Test | 0.90 | 0.21 | 0.04 | 0.40 | <0.001 | | Sanmen Bay | Train | 0.91 | 0.20 | 0.03 | 0.42 | <0.001 | | Test | 0.87 | 0.22 | 0.06 | 0.38 | 0.001 | | Hambantota Port | Train | M5 | 0.72 | 0.23 | 0.11 | 0.39 | 0.011 | | Test | 0.64 | 0.28 | 0.13 | 0.36 | 0.033 | | Sanmen Bay | Train | 0.69 | 0.26 | 0.07 | 0.35 | 0.021 | | Test | 0.60 | 0.30 | 0.16 | 0.30 | 0.051 | | Hambantota Port | Train | Wavelet-M5 | 0.94 | 0.17 | 0.03 | 0.46 | <0.001 | | Test | 0.89 | 0.20 | 0.06 | 0.43 | 0.002 | | Sanmen Bay | Train | 0.88 | 0.18 | 0.04 | 0.42 | <0.001 | | Test | 0.84 | 0.22 | 0.08 | 0.38 | 0.002 |
|
|