Research Article

Low-Code Application and Practical Implications of Common Machine Learning Models for Predicting Punching Shear Strength of Concrete Reinforced Slabs

Table 3

Hyperparameters with tuning range and optimal values.

ModelHyperparameter nameRangeOptimal value using Bayesian processOptimal value using random search

GPR“Sigma”[1.00e−04,3.78e + 03]41.40138.7
“BasisFunction”“constant” “none”“linear”“none”
“linear”
“pureQuadratic”
“KernelFunction”“ardmatern32”“matern32”“matern32”
“ardmatern52”
“exponential”
“matern32” “matern52”
“squaredexponential”
“KernelScale”(1.6870, 1,687)7.32918.3
“Standardise”“true” “false”“true”“true”

SVM“BoxConstraint”(1.00e−03, 1,000)83.51868.53
“Epsilon”(0.165, 1.65e + 04)0.2930.282
“KernelFunction”“gaussian” “linear” “polynomial”“polynomial”“polynomial”
“PolynomialOrder”[2, 4]22
“Standardise”“true” “false”“true”“true”

Ensemble“Method”“Bag “LSBoost”“LSBoost”“LSBoost”
“NumLearningCycles”(10,500)487497
“LearnRate”(1.00e−03,1)0.0490.035
“MinLeafSize”(1,152)24
“MaxNumSplits”(1,303)5103
“NumVariablesToSample”[1, 6]54