Research Article
Hybridization of Machine Learning Algorithms and an Empirical Regression Model for Predicting Debris-Flow-Endangered Areas
Table 4
Comparisons of performance metrics of the predictive models.
| | 
 |  | Model | Training data | Testing data |  | R2 | RMSE | MAE | R2 | RMSE | MAE |  | 
 |  | Single predictive model | NLRM | 0.76 | 0.079 | 0.055 | 0.58 | 0.081 | 0.057 |  | MARS | 0.70 | 0.068 | 0.051 | 0.46 | 0.122 | 0.081 |  | RF | 0.91 | 0.042 | 0.031 | 0.54 | 0.085 | 0.060 |  | SVM | 0.63 | 0.078 | 0.052 | 0.46 | 0.099 | 0.066 |  | 
 |  | Hybrid predictive model | MARS–NLRM | 0.78 | 0.053 | 0.034 | 0.71 | 0.061 | 0.039 |  | RF–NLRM | 0.86 | 0.042 | 0.028 | 0.70 | 0.062 | 0.039 |  | SVM–NLRM | 0.76 | 0.056 | 0.032 | 0.69 | 0.063 | 0.037 |  | 
 | 
 |