Research Article

Comparative Study on Heart Disease Prediction Using Feature Selection Techniques on Classification Algorithms

Table 3

Parameter settings for wrapper-based techniques.

TechniqueFeature selection functionParameters

Forward feature selectionsklearn.feature_selection.SequentialFeatureSelector()svm.SVC (kernel = 'linear', degree = 2), n_features_to_select = 5/6/7/8/9/10, direction = 'forward',
scoring = 'accuracy',
cv = 5,
n_jobs = -1

Backward feature eliminationsklearn.feature_selection.SequentialFeatureSelector()svm.SVC (kernel = 'linear', degree = 2), n_features_to_select = 5/6/7/8/9/10, direction = 'backward',
scoring = 'accuracy',
cv = 5,
n_jobs = -1

Recursive feature eliminationsklearn.feature_selection.RFE()svm.SVC (kernel = 'linear', degree = 2), n_features_to_select = 5/6/7/8/9/10,
step = 1,
verbose = 2

Exhaustive feature selectionmlxtend.feature_selection.ExhaustiveFeatureSelector()svm.SVC (kernel = 'linear', degree = 2),
min_features = 4,
max_features = 5/6/7/8/9/10,
scoring = 'accuracy',
cv = 5,
n_jobs = -1