Research Article
Development of Deep Learning Model for the Recognition of Cracks on Concrete Surfaces
Table 3
Details of CNN’s architecture.
| N° | Layer | Size of activation (i.e., outputs of layer) | Size of weight parameters | Size of bias parameters |
| 1 | Input layer | 227 × 227 × 3 | — | — | 2 | Convolutional layer | 227 × 227 × 16 | 3 × 3 × 3 × 16 | 1 × 1 × 16 | 3 | ReLU layer 1 | 227 × 227 × 16 | — | — | 4 | Fully connected layer 1 | 1 × 1 × 200 | 200 × 824464 | 200 × 1 | 5 | Fully connected layer 2 | 1 × 1 × 200 | 200 × 200 | 200 × 1 | 6 | Batch normalization layer | 1 × 1 × 200 | 1 × 1 × 200 | 1 × 1 × 200 | 7 | ReLU layer 2 | 1 × 1 × 200 | — | — | 8 | Fully connected layer 3 | 1 × 1 × 2 | 2 × 200 | 2 × 1 | 9 | Softmax layer | 1 × 1 × 2 | — | — | 10 | Classification output layer | — | — | — |
|
|