Research Article

Modelling Customs Revenue in Ghana Using Novel Time Series Methods

Table 1

Sample of the study data.

MonthCIFZEECIFEDRIDREVTOTREVXCHR

Jan-10943.19352.88590.316.6368.33143.251.42
Feb-101229.56659.64569.924.6867.85142.041.42
Mar-101368.67670.93697.745.1883.46172.981.42
Apr-101134.18543.99590.195.2773.44155.291.41
May-101078.69481.63597.065.7971.67154.251.41
Jun-101226.05530.87695.185.8378.24166.141.41
Jul-101172.36451.14721.226.4283.7180.081.42
Aug-101398.91610.02788.895.989.96191.621.42
Oct-111830.22671.211159.016.6138.93290.171.53
Nov-111814.09686.871127.226.64146.74308.041.54
Dec-111974.15912.321061.835.89152.06317.411.56
Oct-193725.871346.752379.127.27432.25840.95.32
Nov-193200.34983.872216.488.19438.93855.195.39
Dec-193510.31102.262408.048.2481.24934.935.53

The revenue figures presented in the table are in millions of Ghanaian cedis.