Research Article
Modelling Customs Revenue in Ghana Using Novel Time Series Methods
Table 2
Summary of ARIMA (0, 1, 1) model.
| | ARIMA (0, 1, 1) with drift | | Coefficients | SE |
| | MA 1 | | 0.0933 | | Drift | 8.6917 | 2.5850 | | Sigma2 estimate | 2245.00 | | | Log likelihood | 563.75 | | | AIC | 1133.50 | | | BIC | 1141.52 | | | Ljung–Box test p-value of residuals | 0.01469 | |
|
|