Research Article

Machine Learning ECG Classification Using Wavelet Scattering of Feature Extraction

Table 1

Different classifiers have been proposed for arrhythmia discrimination.

WorkFeature extractionClassifierAccuracy%

Sultan-Qurraie S and Ghorbani Afkhami R(2017)Time-frequency, RR-interval, and higher-order statisticalDecision trees98.92
Iryna Mykoliuk, Daniel Jancarczyk, Mikolaj Karpinski, and Viktor Kifer(2018)Pan-Tompkins algorithm and RR-intervalsRandom forest and neural network98.6
Ledezma CA, Zhou X, Rodríguez B, Tan PJ, and Díaz-Zuccarini V(2019)Pseudo-ECGNeural network95
S. K. Pandeya, R. R. Janghel, V. Vani(2020)Morphological, RR-intervals, wavelet transformer, and higher-order statisticalSVM, LSTM, KNN, and random forest94.4
M. Alfaras, M. C. Soriano and S. Ortín(2019)R-R intervalsEcho state network95.7
Md Rafiul Hassan a, Shamsul Huda B, and Mohammad Mehedi Hassan(2022)Deep learning neural network (DLNN)Multiclass CAN and deep learning neural network (DLNN)88.95
Sudestna Nahak and Goutam Saha(2020)Pan-Tompkins algorithmSupport vector machine (SVM)93.33
Axel Sepúlved, Francisco Castillo, Carlos Palma, and Maria Rodriguez-FernandezTime domain, frequency domain, and wavelet scatteringLinear discriminant analysis (LDA) and decision tree82.7