|
Work | Feature extraction | Classifier | Accuracy% |
|
Sultan-Qurraie S and Ghorbani Afkhami R(2017) | Time-frequency, RR-interval, and higher-order statistical | Decision trees | 98.92 |
Iryna Mykoliuk, Daniel Jancarczyk, Mikolaj Karpinski, and Viktor Kifer(2018) | Pan-Tompkins algorithm and RR-intervals | Random forest and neural network | 98.6 |
Ledezma CA, Zhou X, Rodríguez B, Tan PJ, and Díaz-Zuccarini V(2019) | Pseudo-ECG | Neural network | 95 |
S. K. Pandeya, R. R. Janghel, V. Vani(2020) | Morphological, RR-intervals, wavelet transformer, and higher-order statistical | SVM, LSTM, KNN, and random forest | 94.4 |
M. Alfaras, M. C. Soriano and S. Ortín(2019) | R-R intervals | Echo state network | 95.7 |
Md Rafiul Hassan a, Shamsul Huda B, and Mohammad Mehedi Hassan(2022) | Deep learning neural network (DLNN) | Multiclass CAN and deep learning neural network (DLNN) | 88.95 |
Sudestna Nahak and Goutam Saha(2020) | Pan-Tompkins algorithm | Support vector machine (SVM) | 93.33 |
Axel Sepúlved, Francisco Castillo, Carlos Palma, and Maria Rodriguez-Fernandez | Time domain, frequency domain, and wavelet scattering | Linear discriminant analysis (LDA) and decision tree | 82.7 |
|