Research Article
Student Performance Prediction Using Machine Learning Algorithms
Table 2
Optimal parameters for each algorithm.
| | Algorithm | Hyperparameter | Best value used |
| | Decision trees | Maximum depth | 7 | | Minimum samples split | 2 |
| | Naïve bayes | Smoothing parameter | 1.0 |
| | K-nearest neighbors | Number of neighbors | 10 | | Weight function | “Distance” |
| | Support vector machine (SVM) | Kernel | rbf | | Regularization parameter (C) | 10 | | Gamma | 0.01 |
|
|