Research Article
Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction
Table 1
Standard parameter set for training.
| | Parameter | Value |
| | Transfer function of the hidden neurons | Tan sigmoid | | Transfer function of the output neurons | Log sigmoid | | Training function | Trainscg | | Maximal fail | 1 | | Encoding | Real (decimal) | | Chromosome length | 71 | | Population size | 30 | | Weight initialization routine | Rand | | Initial range | ā1 ~ 1 | | Fitness function | Mean square error | | Selection operation | Roulette whe5el | | Crossover | BLX ā 0.5 | | Mutation | Non-uniform | | Elitist | 2 | | Stopping criterion | 100 iterations |
|
|