Research Article
Visual Analysis of E-Commerce User Behavior Based on Log Mining
Table 2
Cluster analysis results using the optimized K-means algorithm.
| Type | Cluster | 1 | 2 | 3 | 4 | 5 | 6 |
| Click | User_number | 10,000 | 162 | 842 | 2657 | 4574 | 1765 | Clicks | 1155 | 8205 | 3731 | 1637 | 597 | 264 |
| Collect | User_number | 10,000 | 15 | 460 | 55 | 1428 | 8042 | Favorites | 25 | 1287 | 223 | 60 | 27 | 11 |
| Cart | User_number | 8890 | 389 | 445 | 47 | 6116 | 1893 | Goods | 25 | 218 | 27 | 25 | 24 | 11 | Duration | 28 | 38 | 145 | 365 | 56 | 9 |
| Payment | User_number | 10,000 | 55 | 1428 | 15 | 460 | 8042 | Payments | 12 | 150 | 36 | 28 | 20 | 7 |
| Commodity | User_number | 10,000 | 356 | 122 | 755 | 2430 | 6337 | Types_of_goods | 12 | 55 | 35 | 20 | 14 | 7 |
| Churn_rate | User_number | 10,000 | 101 | 1236 | 2638 | 2048 | 3977 | Payments | 12 | 2 | 11 | 15 | 12 | 8 | Churn_rate | 0.1184 | 0.7328 | 0.3124 | 0.1714 | 0.047 | 0.032 |
|
|