Research Article
Pipeline Multitype Artifact Recognition Method Based on Inception_Resnet _V2 Structure Improving SSD Network
Table 1
Comparison of evaluation parameters of three target detection methods.
| Models | Backbone network | mAP (%) | Detection accuracy (%) | Equal elbow | Equal tee | Plug | Union | Cap |
| SSD | VGG-16 | 73.81 | 78.15 | 74.41 | 71.32 | 73.59 | 71.58 | RCNN | VGG-16 | 77.74 | 72.18 | 79.68 | 75.72 | 78.33 | 70.21 | DSSD | ResNET | 78.27 | 82.08 | 80.05 | 73.84 | 77.14 | 78.22 | DSOD | DenseNet | 79.13 | 80.83 | 80.32 | 74.60 | 74.75 | 76.86 | R-SSD | ResNet | 80.04 | 82.35 | 81.67 | 73.62 | 75.83 | 80.02 | Paper method | VGG-16 | 83.50 | 83.68 | 87.20 | 84.15 | 82.14 | 80.31 |
|
|