Research Article

Research on Data Analysis and Visualization of Recruitment Positions Based on Text Mining

Algorithm 1

Gensim algorithm.
LDA modeling using the Gensim algorithm
Input: job description text set ()
Output: topic inference
(1) function Gensim(texts)
(2)  create part of speech table flags, stop word table stop words
(3)  use the Jieba library to segment and filter
(4)  words_ls ← []
(5)  for text in texts:
(6)   words ← remove_top words([w.word for in jp.cut(text)])
(7)   words_ls.append(words)
(8)  end for
(9)  dictionary ← corpora.Dictionary (word_ls)
(10)  corpus ← [dictionary.doc2bow (words) for words in words_ls]
(11)  LDA ← models.ldamodel.LdaModel(corpus= corpus, id2word= dictionary, num_opics= 1)
(12)  show the top 30 words in each topic
(13)  for topic in lda.print_topics (num_words= 30):
(14)   print topic
(15)  end for
(16) end function