Research Article
A Mental Workload Evaluation Model Based on Improved Multibranch LSTM Network with Attention Mechanism
Table 4
2-classification experimental results.
| Model\Index | Acc | P | R | F-score |
| CNN | 0.7937 ± 0.1125 | 0.8084 ± 0.1226 | 0.8114 ± 0.1310 | 0.7878 ± 0.1063 | RNN | 0.7620 ± 0.1281 | 0.7821 ± 0.1118 | 0.7553 ± 0.1332 | 0.7573 ± 0.1451 | LSTM | 0.8218 ± 0.1054 | 0.8446 ± 0.1213 | 0.8092 ± 0.1219 | 0.8114 ± 0.1067 | Reference [31] | 0.8882 ± 0.0805 | 0.8789 ± 0.1154 | 0.8467 ± 0.1026 | 0.8755 ± 0.1100 | Reference [32] | 0.8637 ± 0.0993 | 0.8606 ± 0.0412 | 0.8620 ± 0.0317 | 0.8479 ± 0.0924 | Proposed | 0.9533 ± 0.0334 | 0.9721 ± 0.0 215 | 0.9329 ± 0.0281 | 0.9448 ± 0.0332 |
|
|