Research Article
A Mental Workload Evaluation Model Based on Improved Multibranch LSTM Network with Attention Mechanism
Table 5
3-classification experimental results.
| Model\Index | Acc | P | R | F-score |
| CNN | 0.7731 ± 0.1065 | 0.7682 ± 0.1213 | 0.7843 0.1242 | 0.7654 0.1132 | RNN | 0.7845 ± 0.1023 | 0.7994 ± 0.1235 | 0.7653 0.1730 | 0.7598 0.1241 | LSTM | 0.8123 ± 0.1164 | 0.8345 ± 0.1163 | 0.7992 0.1253 | 0.8013 0.1151 | Reference [31] | 0.8632 ± 0.1010 | 0.8721 ± 0.1012 | 0.8543 0.1132 | 0.8646 0.1002 | Reference [32] | 0.8637 ± 0.0993 | 0.8606 ± 0.0412 | 0.8620 0.0317 | 0.8479 0.0924 | Proposed | 0.9514 ± 0.0362 | 0.9653 ± 0.0324 | 0.9247 0.0432 | 0.9365 0.0531 |
|
|