Research Article
A Mental Workload Evaluation Model Based on Improved Multibranch LSTM Network with Attention Mechanism
Table 6
4-classification experimental results.
| Model\Index | Acc | P | R | F-score |
| CNN | 0.7553 ± 0.0946 | 0.7634 ± 0.1120 | 0.7717 ± 0.1162 | 0.7532 ± 0.1006 | RNN | 0.7721 ± 0.1102 | 0.7842 ± 0.1089 | 0.7586 ± 0.1412 | 0.7446 ± 0.1144 | LSTM | 0.7904 ± 0.1085 | 0.8008 ± 0.1092 | 0.7783 ± 0.1154 | 0.7678 ± 0.1019 | Reference [31] | 0.8242 ± 0.0890 | 0.8353 ± 0.1145 | 0.8126 ± 0.1093 | 0.8086 ± 0.0974 | Reference [32] | 0.8199 ± 0.0686 | 0.8321 ± 0.0854 | 0.8069 ± 0.0765 | 0.8027 ± 0.0679 | Proposed | 0.9264 ± 0.0687 | 0.9347 ± 0.0535 | 0.9110 ± 0.0846 | 0.9004 ± 0.0456 |
|
|