Research Article
The Recognition of Holy Qur’an Reciters Using the MFCCs’ Technique and Deep Learning
Table 6
Testing phase result based on 2-second segment length.
| Features’ number | Accuracy | F1-measure | Recall | Precision | RMSE |
| SVM | 0.980861 | 0.980858 | 0.980861 | 0.980868 | 0.516454 | LR | 0.968896 | 0.968941 | 0.968896 | 0.968998 | 0.634262 | DT | 0.682805 | 0.68334 | 0.682805 | 0.684155 | 1.859028 | RF | 0.940434 | 0.940081 | 0.940434 | 0.940039 | 0.839006 | NB | 0.886737 | 0.885253 | 0.886737 | 0.886315 | 1.135998 | KNN | 0.956279 | 0.95667 | 0.956279 | 0.957806 | 0.789826 | ANN | 0.971244 | 0.971063 | 0.971244 | 0.971251 | 0.614763 | AdaBoost | 0.724471 | 0.724527 | 0.724471 | 0.731606 | 1.820349 | Proposed model | 0.988262 | 0.988229 | 0.988262 | 0.988323 | 0.434703 |
|
|