Research Article
The Recognition of Holy Qur’an Reciters Using the MFCCs’ Technique and Deep Learning
Table 7
Testing phase result based on 3-second segment length.
| Features’ number | Accuracy | F1-measure | Recall | Precision | RMSE |
| SVM | 0.987235 | 0.987206 | 0.987235 | 0.987243 | 0.407348 | LR | 0.974471 | 0.974466 | 0.974471 | 0.974542 | 0.576841 | DT | 0.677816 | 0.67824 | 0.677816 | 0.679116 | 1.94624 | RF | 0.953785 | 0.953264 | 0.953785 | 0.953817 | 0.723717 | NB | 0.923415 | 0.922244 | 0.923415 | 0.923427 | 0.919277 | KNN | 0.968309 | 0.968487 | 0.968309 | 0.969337 | 0.618451 | ANN | 0.977112 | 0.977062 | 0.977112 | 0.977154 | 0.566835 | AdaBoost | 0.700704 | 0.700658 | 0.700704 | 0.701963 | 1.763653 | Proposed model | 0.987676 | 0.987652 | 0.987676 | 0.987684 | 0.423765 |
|
|