Research Article
The Recognition of Holy Qur’an Reciters Using the MFCCs’ Technique and Deep Learning
Table 8
Testing phase result based on 4-second segment length.
| Features’ number | Accuracy | F1-measure | Recall | Precision | RMSE |
| SVM | 0.98761 | 0.987617 | 0.98761 | 0.987648 | 0.390015 | LR | 0.981807 | 0.981838 | 0.981807 | 0.981945 | 0.481463 | DT | 0.668427 | 0.669207 | 0.668427 | 0.672091 | 1.978908 | RF | 0.96068 | 0.960466 | 0.96068 | 0.960494 | 0.667839 | NB | 0.927816 | 0.926662 | 0.927816 | 0.927617 | 0.933215 | KNN | 0.969483 | 0.96975 | 0.969483 | 0.970703 | 0.649575 | ANN | 0.969483 | 0.96946 | 0.969483 | 0.969577 | 0.608044 | AdaBoost | 0.682511 | 0.683807 | 0.682511 | 0.689531 | 1.920362 | Proposed model | 0.995406 | 0.995403 | 0.995406 | 0.995431 | 0.287566 |
|
|