Research Article
A Multiple Kernel Learning Approach for Air Quality Prediction
Table 9
Performance comparison for predicting the future 6 hour’s AQHI in HK.
| | | Accuracy | mse | wr | wf | wp |
| | ARIMA | 0.471 | 1.208 | 0.471 | 0.472 | 0.474 | | RF | 0.785 | 0.27 | 0.785 | 0.781 | 0.783 | | MLP | 0.942 | 0.086 | 0.942 | 0.939 | 0.938 | | SVC_linear | 0.965 | 0.038 | 0.965 | 0.965 | 0.966 | | SVC_rbf | 0.937 | 0.066 | 0.937 | 0.937 | 0.937 | | SVC_poly | 0.959 | 0.043 | 0.959 | 0.960 | 0.960 | | SVC_sigmoid | 0.267 | 4.992 | 0.267 | 0.113 | 0.071 | | LSTM | 0.732 | 0.300 | 0.732 | 0.733 | 0.749 | | MKSVC | 0.976 | 0.028 | 0.976 | 0.976 | 0.976 |
|
|