Research Article

Comparative Analysis of Global Solar Radiation Models in Different Regions of China

Table 9

Statistics performances of the 12 models in estimating global solar radiation in Southwest China.

Stations Evaluation indexAPOGJinBALOGMEMAHDLHSANBC

Chengdu
RMSE2.7712.6002.7942.5502.7742.7792.7723.0392.7863.6973.6972.830
RRMSE27.726.028.025.527.827.827.830.427.937.037.028.3
NS0.8180.8400.8150.8460.8180.8170.8180.7820.8160.6770.6770.811
MAE2.2492.0892.2692.0492.2522.2562.2492.4812.2622.9132.9132.152

Kunming
RMSE2.0872.1202.0902.0742.0852.0882.0842.2602.0834.0154.0153.312
RRMSE12.813.012.912.812.812.812.813.912.824.724.720.4
NS0.8940.8900.8930.8950.8940.8940.8940.8750.8940.6060.6060.732
MAE1.5551.5981.5581.5351.5531.5561.5521.7571.5513.2643.2642.432

Lasa
RMSE1.7591.7691.7731.7721.7611.7711.7641.7851.7672.9722.9722.863
RRMSE8.78.88.88.88.78.88.88.98.814.814.814.2
NS0.8820.8800.8800.8800.8810.8800.8810.8780.8810.6620.6620.687
MAE1.2471.2511.2581.2591.2481.2561.2501.3111.2532.2352.2352.072

Average
RMSE2.2062.1632.2192.1322.2072.2122.2062.3612.2123.5613.5613.002
RRMSE16.416.016.515.716.416.516.417.716.525.525.521.0
NS0.8650.8700.8630.8740.8640.8640.8640.8450.8640.6480.6480.743
MAE1.6841.6461.6951.6141.6841.6891.6841.8501.6892.8042.8042.218
GPI0.0190.172−0.0190.2900.0160.0000.017−0.5290.000−4.710−4.710−2.662
Rank328156497111210