Abstract

We consider a Hamiltonian with cutoffs describing the weak decay of spin 1 massive bosons into the full family of leptons. The Hamiltonian is a self-adjoint operator in an appropriate Fock space with a unique ground state. We prove a Mourre estimate and a limiting absorption principle above the ground state energy and below the first threshold for a sufficiently small coupling constant. As a corollary, we prove the absence of eigenvalues and absolute continuity of the energy spectrum in the same spectral interval.

1. Introduction

In this article, we consider a mathematical model of the weak interaction as patterned according to the Standard Model in Quantum Field Theory (see [1, 2]). We choose the example of the weak decay of the intermediate vector bosons ๐‘Šยฑ into the full family of leptons.

The mathematical framework involves fermionic Fock spaces for the leptons and bosonic Fock spaces for the vector bosons. The interaction is described in terms of annihilation and creation operators together with kernels which are square integrable with respect to momenta. The total Hamiltonian, which is the sum of the free energy of the particles and antiparticles and of the interaction, is a self-adjoint operator in the Fock space for the leptons and the vector bosons and it has an unique ground state in the Fock space for a sufficiently small coupling constant.

The weak interaction is one of the four fundamental interactions known up to now. But the weak interaction is the only one which does not generate bound states. As it is well known, it is not the case for the strong, electromagnetic, and gravitational interactions. Thus we are expecting that the spectrum of the Hamiltonian associated with every model of weak decays is absolutely continuous above the energy of the ground state, and this article is a first step towards a proof of such a statement. Moreover a scattering theory has to be established for every such Hamiltonian.

In this paper we establish a Mourre estimate and a limiting absorption principle for any spectral interval above the energy of the ground state and below the mass of the electron for a small coupling constant.

Our study of the spectral analysis of the total Hamiltonian is based on the conjugate operator method with a self-adjoint conjugate operator. The methods used in this article are taken largely from [3, 4] and are based on [5, 6]. Some of the results of this article have been announced in [7].

For other applications of the conjugate operator method see [8โ€“19].

For related results about models in Quantum Field Theory see [20, 21] in the case of the Quantum Electrodynamics and [22] in the case of the weak interaction.

The paper is organized as follows. In Section 2, we give a precise definition of the model we consider. In Section 3, we state our main results and in the following sections, together with the appendix, detailed proofs of the results are given.

2. The Model

The weak decay of the intermediate bosons ๐‘Š+ and ๐‘Šโˆ’ involves the full family of leptons together with the bosons themselves, according to the Standard Model (see [1, formula (4.139)] and [2]).

The full family of leptons involves the electron ๐‘’โˆ’ and the positron ๐‘’+, together with the associated neutrino ๐œˆ๐‘’ and antineutrino ๐œˆ๐‘’, the muons ๐œ‡โˆ’ and ๐œ‡+ together with the associated neutrino ๐œˆ๐œ‡ and antineutrino ๐œˆ๐œ‡, and the tau leptons ๐œโˆ’ and ๐œ+ together with the associated neutrino ๐œˆ๐œ and antineutrino ๐œˆ๐œ.

It follows from the Standard Model that neutrinos and antineutrinos are massless particles. Neutrinos are left handed, that is, neutrinos have helicity โˆ’1/2 and antineutrinos are right handed, that is, antineutrinos have helicity +1/2.

In what follows, the mathematical model for the weak decay of the vector bosons ๐‘Š+ and ๐‘Šโˆ’ that we propose is based on the Standard Model, but we adopt a slightly more general point of view because we suppose that neutrinos and antineutrinos are both massless particles with helicity ยฑ1/2. We recover the physical situation as a particular case. We could also consider a model with massive neutrinos and antineutrinos built upon the Standard Model with neutrino mixing [23].

Let us sketch how we define a mathematical model for the weak decay of the vector bosons ๐‘Šยฑ into the full family of leptons.

The energy of the free leptons and bosons is a self-adjoint operator in the corresponding Fock space (see below), and the main problem is associated with the interaction between the bosons and the leptons. Let us consider only the interaction between the bosons and the electrons, the positrons, and the corresponding neutrinos and antineutrinos. Other cases are strictly similar. In the Schrรถdinger representation the interaction is given by (see [1, page 159, equation (4.139)] and [2, page 308, equation (21.3.20)]) ๎€œ๐ผ=d3๐‘ฅฮจ๐‘’(๐‘ฅ)๐›พ๐›ผ๎€ท1โˆ’๐›พ5๎€ธฮจ๐œˆ๐‘’(๐‘ฅ)๐‘Š๐›ผ(๎€œ๐‘ฅ)+d3๐‘ฅฮจ๐œˆ๐‘’(๐‘ฅ)๐›พ๐›ผ๎€ท1โˆ’๐›พ5๎€ธฮจ๐‘’(๐‘ฅ)๐‘Š๐›ผ(๐‘ฅ)โˆ—,(2.1) where ๐›พ๐›ผ, ๐›ผ=0,1,2,3 and ๐›พ5 are the Dirac matrices and ฮจโ‹…(๐‘ฅ) and ฮจโ‹…(๐‘ฅ) are the Dirac fields for ๐‘’โˆ’, ๐‘’+, ๐œˆ๐‘’, and ๐œˆ๐‘’.

We have ฮจ๐‘’๎‚€1(๐‘ฅ)=๎‚2๐œ‹3/2๎“๐‘ =ยฑ1/2๎€œd3๐‘๎ƒฉ๐‘๐‘’,+(๐‘,๐‘ )๐‘ข(๐‘,๐‘ )โˆš๐‘0e๐‘–๐‘โ‹…๐‘ฅ+๐‘โˆ—๐‘’,โˆ’(๐‘,๐‘ )๐‘ฃ(๐‘,๐‘ )โˆš๐‘0eโˆ’๐‘–๐‘โ‹…๐‘ฅ๎ƒช,ฮจ๐‘’(๐‘ฅ)=ฮจ๐‘’(๐‘ฅ)โ€ ๐›พ0.(2.2) Here ๐‘0=(|๐‘|2+๐‘š2๐‘’)1/2 where ๐‘š๐‘’>0 is the mass of the electron, and ๐‘ข(๐‘,๐‘ ) and ๐‘ฃ(๐‘,๐‘ ) are the normalized solutions to the Dirac equation (see [1, Appendix]).

The operators ๐‘๐‘’,+(๐‘,๐‘ ) and ๐‘โˆ—๐‘’,+(๐‘,๐‘ ) (resp., ๐‘๐‘’,โˆ’(๐‘,๐‘ ) and ๐‘โˆ—๐‘’,โˆ’(๐‘,๐‘ )) are the annihilation and creation operators for the electrons (resp., the positrons) satisfying the anticommutation relations (see below).

Similarly we define ฮจ๐œˆ๐‘’(๐‘ฅ) and ฮจ๐œˆ๐‘’(๐‘ฅ) by substituting the operators ๐‘๐œˆ๐‘’,ยฑ(๐‘,๐‘ ) and ๐‘โˆ—๐œˆ๐‘’,ยฑ(๐‘,๐‘ ) for ๐‘๐‘’,ยฑ(๐‘,๐‘ ) and ๐‘โˆ—๐‘’,ยฑ(๐‘,๐‘ ) with ๐‘0=|๐‘|. The operators ๐‘๐œˆ๐‘’,+(๐‘,๐‘ ) and ๐‘โˆ—๐œˆ๐‘’,+(๐‘,๐‘ ) (resp., ๐‘๐œˆ๐‘’,โˆ’(๐‘,๐‘ ) and ๐‘โˆ—๐œˆ๐‘’,โˆ’(๐‘,๐‘ )) are the annihilation and creation operators for the neutrinos associated with the electrons (resp., the antineutrinos).

For the ๐‘Š๐›ผ fields we have (see [24, Sectionโ€‰โ€‰5.3]) ๐‘Š๐›ผ๎‚€1(๐‘ฅ)=๎‚2๐œ‹3/2๎“๐œ†=โˆ’1,0,1๎€œd3๐‘˜โˆš2๐‘˜0๎€ท๐œ–๐›ผ(๐‘˜,๐œ†)๐‘Ž+(๐‘˜,๐œ†)e๐‘–๐‘˜โ‹…๐‘ฅ+๐œ–โˆ—๐›ผ(๐‘˜,๐œ†)๐‘Žโˆ—โˆ’(๐‘˜,๐œ†)eโˆ’๐‘–๐‘˜โ‹…๐‘ฅ๎€ธ.(2.3) Here ๐‘˜0=(|๐‘˜|2+๐‘š2๐‘Š)1/2 where ๐‘š๐‘Š>0 is the mass of the bosons ๐‘Šยฑ. ๐‘Š+ is the antiparticule of ๐‘Šโˆ’. The operators ๐‘Ž+(๐‘˜,๐œ†) and ๐‘Žโˆ—+(๐‘˜,๐œ†) (resp., ๐‘Žโˆ’(๐‘˜,๐œ†) and ๐‘Žโˆ—โˆ’(๐‘˜,๐œ†)) are the annihilation and creation operators for the bosons ๐‘Šโˆ’ (resp., ๐‘Š+) satisfying the canonical commutation relations. The vectors ๐œ–๐›ผ(๐‘˜,๐œ†) are the polarizations of the massive spin 1 bosons ๐‘Šยฑ (see [24, Sectionโ€‰โ€‰5.2]).

The interaction (2.1) is a formal operator and, in order to get a well-defined operator in the Fock space, one way is to adapt what Glimm and Jaffe have done in the case of the Yukawa Hamiltonian (see [25]). For that sake, we have to introduce a spatial cutoff ๐‘”(๐‘ฅ) such that ๐‘”โˆˆ๐ฟ1(โ„3), together with momentum cutoffs ๐œ’(๐‘) and ๐œŒ(๐‘˜) for the Dirac fields and the ๐‘Š๐œ‡ fields, respectively.

Thus when one develops the interaction ๐ผ with respect to products of creation and annihilation operators, one gets a finite sum of terms associated with kernels of the form ๐œ’๎€ท๐‘1๎€ธ๐œ’๎€ท๐‘2๎€ธ๐œŒ๎€ท๐‘(๐‘˜)ฬ‚๐‘”1+๐‘2๎€ธ,โˆ’๐‘˜(2.4) where ฬ‚๐‘” is the Fourier transform of ๐‘”. These kernels are square integrable.

In what follows, we consider a model involving terms of the above form but with more general square integrable kernels.

We follow the convention described in [24, Sectionโ€‰โ€‰4.1] that we quote: โ€œThe state-vector will be taken to be symmetric under interchange of any bosons with each other, or any bosons with any fermions, and antisymmetric with respect to interchange of any two fermions with each other, in all cases, whether the particles are of the same species or not.โ€™โ€™ Thus, as it follows from [24, Sectionโ€‰โ€‰4.2], fermionic creation and annihilation operators of different species of leptons will always anticommute.

Concerning our notations, from now on, โ„“โˆˆ{1,2,3} denotes each species of leptons. โ„“=1 denotes the electron ๐‘’โˆ’ the positron ๐‘’+ and the neutrinos ๐œˆ๐‘’, ๐œˆ๐‘’. โ„“=2 denotes the muons ๐œ‡โˆ’, ๐œ‡+ and the neutrinos ๐œˆ๐œ‡ and ๐œˆ๐œ‡, and โ„“=3 denotes the tau-leptons and the neutrinos ๐œˆ๐œ and ๐œˆ๐œ.

Let ๐œ‰1=(๐‘1,๐‘ 1) be the quantum variables of a massive lepton, where ๐‘1โˆˆโ„3 and ๐‘ 1โˆˆ{โˆ’1/2,1/2} is the spin polarization of particles and antiparticles. Let ๐œ‰2=(๐‘2,๐‘ 2) be the quantum variables of a massless lepton where ๐‘2โˆˆโ„3 and ๐‘ 2โˆˆ{โˆ’1/2,1/2} is the helicity of particles and antiparticles, and, finally, let ๐œ‰3=(๐‘˜,๐œ†) be the quantum variables of the spin 1 bosons ๐‘Š+ and ๐‘Šโˆ’ where ๐‘˜โˆˆโ„3 and ๐œ†โˆˆ{โˆ’1,0,1} is the polarization of the vector bosons (see [24, Sectionโ€‰โ€‰5]). We set ฮฃ1=โ„3ร—{โˆ’1/2,1/2} for the leptons and ฮฃ2=โ„3ร—{โˆ’1,0,1} for the bosons. Thus ๐ฟ2(ฮฃ1) is the Hilbert space of each lepton and ๐ฟ2(ฮฃ2) is the Hilbert space of each boson. The scalar product in ๐ฟ2(ฮฃ๐‘—), ๐‘—=1,2 is defined by (๎€œ๐‘“,๐‘”)=ฮฃ๐‘—๐‘“(๐œ‰)๐‘”(๐œ‰)d๐œ‰,๐‘—=1,2.(2.5) Here ๎€œฮฃ1d๎“๐œ‰=๐‘ =+1/2,โˆ’1/2๎€œd๎€œ๐‘,ฮฃ2d๎“๐œ‰=๐œ†=0,1,โˆ’1๎€œd๎€ท๐‘˜,๐‘,๐‘˜โˆˆโ„3๎€ธ.(2.6)

The Hilbert space for the weak decay of the vector bosons ๐‘Š+ and ๐‘Šโˆ’ is the Fock space for leptons and bosons that we now describe.

Let ๐”– be any separable Hilbert space. Let โจ‚๐‘›๐‘Ž๐”– (resp., โจ‚๐‘›๐‘ ๐”–) denote the antisymmetric (resp., symmetric) ๐‘›th tensor power of ๐”–. The fermionic (resp., bosonic) Fock space over ๐”–, denoted by ๐”‰๐‘Ž(๐”–) (resp., ๐”‰๐‘ (๐”–)), is the direct sum ๐”‰๐‘Ž(๐”–)=โˆž๎ถ๐‘›๐‘›=0๎ท๐‘Ž๐”–๎ƒฉresp.,๐”‰๐‘ (๐”–)=โˆž๎ถ๐‘›๐‘›=0๎ท๐‘ ๐”–๎ƒช,(2.7) where โจ‚0๐‘Žโจ‚๐”–=0๐‘ ๐”–โ‰กโ„‚. The state ฮฉ=(1,0,0,โ€ฆ,0,โ€ฆ) denotes the vacuum state in ๐”‰๐‘Ž(๐”–) and in ๐”‰๐‘ (๐”–).

For every โ„“, ๐”‰โ„“ is the fermionic Fock space for the corresponding species of leptons including the massive particle and antiparticle together with the associated neutrino and antineutrino, that is, ๐”‰โ„“=4๎ท๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ1๎€ธ๎€ธโ„“=1,2,3.(2.8) We have ๐”‰โ„“=๎ถ๐‘žโ„“โ‰ฅ0,๐‘žโ„“โ‰ฅ0,๐‘Ÿโ„“โ‰ฅ0,๐‘Ÿโ„“โ‰ฅ0๐”‰(๐‘žโ„“,๐‘žโ„“,๐‘Ÿโ„“,๐‘Ÿโ„“)โ„“(2.9) with ๐”‰(๐‘žโ„“,๐‘žโ„“,๐‘Ÿโ„“,๐‘Ÿโ„“)โ„“=๎ƒฉ๐‘žโ„“๎ท๐‘Ž๐ฟ2๎€ทฮฃ1๎€ธ๎ƒชโŠ—โŽ›โŽœโŽœโŽ๐‘žโ„“๎ท๐‘Ž๐ฟ2๎€ทฮฃ1๎€ธโŽžโŽŸโŽŸโŽ โŠ—๎ƒฉ๐‘Ÿโ„“๎ท๐‘Ž๐ฟ2๎€ทฮฃ1๎€ธ๎ƒชโŠ—โŽ›โŽœโŽœโŽ๐‘Ÿโ„“๎ท๐‘Ž๐ฟ2๎€ทฮฃ1๎€ธโŽžโŽŸโŽŸโŽ .(2.10) Here ๐‘žโ„“ (resp., ๐‘žโ„“) is the number of massive fermionic particle (resp., antiparticles) and ๐‘Ÿโ„“ (resp., ๐‘Ÿโ„“) is the number of neutrinos (resp., antineutrinos). The vector ฮฉโ„“ is the associated vacuum state. The fermionic Fock space denoted by ๐”‰๐ฟ for the leptons is then ๐”‰๐ฟ=3๎ทโ„“=1๐”‰โ„“,(2.11) and ฮฉ๐ฟ=โจ‚3โ„“=1ฮฉโ„“ is the vacuum state.

The bosonic Fock space for the vector bosons ๐‘Š+ and ๐‘Šโˆ’, denoted by ๐”‰๐‘Š, is then ๐”‰๐‘Š=๐”‰๐‘ ๎€ท๐ฟ2๎€ทฮฃ2๎€ธ๎€ธโŠ—๐”‰๐‘ ๎€ท๐ฟ2๎€ทฮฃ2๎€ธ๎€ธโ‰ƒ๐”‰๐‘ ๎€ท๐ฟ2๎€ทฮฃ2๎€ธโŠ•๐ฟ2๎€ทฮฃ2.๎€ธ๎€ธ(2.12) We have ๐”‰๐‘Š=๎ถ๐‘กโ‰ฅ0,๐‘กโ‰ฅ0๐”‰(๐‘ก,๐‘Š๐‘ก),(2.13) where ๐”‰(๐‘ก,๐‘Š๐‘ก)โจ‚=(๐‘ก๐‘ ๐ฟ2(ฮฃ2โจ‚))โŠ—(๐‘ก๐‘ ๐ฟ2(ฮฃ2)). Here ๐‘ก (resp., ๐‘ก) is the number of bosons ๐‘Šโˆ’ (resp., ๐‘Š+). The vector ฮฉ๐‘Š is the corresponding vacuum.

The Fock space for the weak decay of the vector bosons ๐‘Š+ and ๐‘Šโˆ’, denoted by ๐”‰, is thus ๐”‰=๐”‰๐ฟโŠ—๐”‰๐‘Š,(2.14) and ฮฉ=ฮฉ๐ฟโŠ—ฮฉ๐‘Š is the vacuum state.

For every โ„“โˆˆ{1,2,3} let ๐”‡โ„“ denote the set of smooth vectors ๐œ“โ„“โˆˆ๐”‰โ„“ for which ๐œ“(๐‘žโ„“,๐‘žโ„“,๐‘Ÿโ„“,๐‘Ÿโ„“)โ„“ has a compact support and ๐œ“(๐‘žโ„“,๐‘žโ„“,๐‘Ÿโ„“,๐‘Ÿโ„“)โ„“=0 for all but finitely many (๐‘žโ„“,๐‘žโ„“,๐‘Ÿโ„“,๐‘Ÿโ„“). Let ๐”‡๐ฟ=๎‚Šโจ‚3โ„“=1๐”‡โ„“.(2.15) Here ๎‚Šโจ‚ is the algebraic tensor product.

Let ๐”‡๐‘Š denote the set of smooth vectors ๐œ™โˆˆ๐”‰๐‘Š for which ๐œ™(๐‘ก,๐‘ก) has a compact support and ๐œ™(๐‘ก,๐‘ก)=0 for all but finitely many (๐‘ก,๐‘ก).

Let ๐”‡=๐”‡๐ฟ๎โŠ—๐”‡๐‘Š.(2.16) The set ๐”‡ is dense in ๐”‰.

Let ๐ดโ„“ be a self-adjoint operator in ๐”‰โ„“ such that ๐”‡โ„“ is a core for ๐ดโ„“. Its extension to ๐”‰๐ฟ is, by definition, the closure in ๐”‰๐ฟ of the operator ๐ด1โŠ—12โŠ—13 with domain ๐”‡๐ฟ when โ„“=1, of the operator 11โŠ—๐ด2โŠ—13 with domain ๐”‡๐ฟ when โ„“=2, and of the operator 11โŠ—12โŠ—๐ด3 with domain ๐”‡๐ฟ when โ„“=3. Here 1โ„“ is the operator identity on ๐”‰โ„“.

The extension of ๐ดโ„“ to ๐”‰๐ฟ is a self-adjoint operator for which ๐”‡๐ฟ is a core and it can be extended to ๐”‰. The extension of ๐ดโ„“ to ๐”‰ is, by definition, the closure in ๐”‰ of the operator ๎‚๐ดโ„“โŠ—1๐‘Š with domain ๐”‡, where ๎‚๐ดโ„“ is the extension of ๐ดโ„“ to ๐”‰๐ฟ. The extension of ๐ดโ„“ to ๐”‰ is a self-adjoint operator for which ๐”‡ is a core.

Let ๐ต be a self-adjoint operator in ๐”‰๐‘Š for which ๐”‡๐‘Š is a core. The extension of the self-adjoint operator ๐ดโ„“โŠ—๐ต is, by definition, the closure in ๐”‰ of the operator ๐ด1โŠ—12โŠ—13โŠ—๐ต with domain ๐”‡ when โ„“=1, of the operator 11โŠ—๐ด2โŠ—13โŠ—๐ต with domain ๐”‡ when โ„“=2, and of the operator 11โŠ—12โŠ—๐ด3โŠ—๐ต with domain ๐”‡ when โ„“=3. The extension of ๐ดโ„“โŠ—๐ต to ๐”‰ is a self-adjoint operator for which ๐”‡ is a core.

We now define the creation and annihilation operators.

For each โ„“=1,2,3, ๐‘โ„“,๐œ–(๐œ‰1) (resp., ๐‘โˆ—โ„“,๐œ–(๐œ‰1)) is the fermionic annihilation (resp., fermionic creation) operator for the corresponding species of massive particle when ๐œ–=+ and for the corresponding species of massive antiparticle when ๐œ–=โˆ’. The operators ๐‘โ„“,๐œ–(๐œ‰1) and ๐‘โˆ—โ„“,๐œ–(๐œ‰1) are defined as usually (see, e.g., [20, 26]; see also the detailed definitions in [27]).

Similarly, for each โ„“=1,2,3, ๐‘โ„“,๐œ–(๐œ‰2) (resp., ๐‘โˆ—โ„“,๐œ–(๐œ‰2)) is the fermionic annihilation (resp., fermionic creation) operator for the corresponding species of neutrino when ๐œ–=+ and for the corresponding species of antineutrino when ๐œ–=โˆ’. The operators ๐‘โ„“,๐œ–(๐œ‰2) and ๐‘โˆ—โ„“,๐œ–(๐œ‰2) are defined in a standard way, but with the additional requirements that for any โ„“, โ„“๎…ž, ๐œ– and ๐œ–๎…ž, the operators ๐‘โ™ฏโ„“,๐œ–(๐œ‰1) and ๐‘โ™ฏโ„“โ€ฒ,๐œ–โ€ฒ(๐œ‰2) anticommutes, where โ™ฏ stands either for a โˆ— or for no symbol (see the detailed definitions in [27]).

The operator ๐‘Ž๐œ–(๐œ‰3) (resp., ๐‘Žโˆ—๐œ–(๐œ‰3)) is the bosonic annihilation (resp., bosonic creation) operator for the boson ๐‘Šโˆ’ when ๐œ–=+ and for the boson ๐‘Š+ when ๐œ–=โˆ’ (see, e.g., [20, 26], or [27]). Note that ๐‘Žโ™ฏ(๐œ‰3) commutes with ๐‘โ™ฏโ„“,๐œ–(๐œ‰1) and ๐‘โ™ฏโ„“โ€ฒ,๐œ–โ€ฒ(๐œ‰2).

The following canonical anticommutation and commutation relations hold: ๎‚†๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘โˆ—โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰๎…ž1๎€ธ๎‚‡=๐›ฟโ„“โ„“โ€ฒ๐›ฟ๐œ–๐œ–โ€ฒ๐›ฟ๎€ท๐œ‰1โˆ’๐œ‰๎…ž1๎€ธ,๎‚†๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ,๐‘โˆ—โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰๎…ž2๎€ธ๎‚‡=๐›ฟโ„“โ„“โ€ฒ๐›ฟ๐œ–๐œ–โ€ฒ๐›ฟ๎€ท๐œ‰2โˆ’๐œ‰๎…ž2๎€ธ,๎€บ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธ,๐‘Žโˆ—๐œ–โ€ฒ๎€ท๐œ‰๎…ž3๎€ธ๎€ป=๐›ฟ๐œ–๐œ–โ€ฒ๐›ฟ๎€ท๐œ‰3โˆ’๐œ‰๎…ž3๎€ธ,๎€ฝ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰๎…ž1=๎€ฝ๐‘๎€ธ๎€พโ„“,๐œ–๎€ท๐œ‰2๎€ธ,๐‘โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰๎…ž2๎€บ๐‘Ž๎€ธ๎€พ=0,๐œ–๎€ท๐œ‰3๎€ธ,๐‘Ž๐œ–โ€ฒ๎€ท๐œ‰๎…ž3๎€ฝ๐‘๎€ธ๎€ป=0,โ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰2=๎‚†๐‘๎€ธ๎€พโ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘โˆ—โ„“โ€ฒ,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๎‚‡๎€บ๐‘=0,โ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘Ž๐œ–โ€ฒ๎€ท๐œ‰3=๎€บ๐‘๎€ธ๎€ปโ„“,๐œ–๎€ท๐œ‰1๎€ธ,๐‘Žโˆ—๐œ–โ€ฒ๎€ท๐œ‰3=๎€บ๐‘๎€ธ๎€ปโ„“,๐œ–๎€ท๐œ‰2๎€ธ,๐‘Ž๐œ–โ€ฒ๎€ท๐œ‰3=๎€บ๐‘๎€ธ๎€ปโ„“,๐œ–๎€ท๐œ‰2๎€ธ,๐‘Žโˆ—๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎€ป=0,(2.17) where we used the notation ๐›ฟ(๐œ‰๐‘—โˆ’๐œ‰๎…ž๐‘—)=๐›ฟ๐œ†๐œ†โ€ฒ๐›ฟ(๐‘˜โˆ’๐‘˜๎…ž).

We recall that the following operators, with ๐œ‘โˆˆ๐ฟ2(ฮฃ1), ๐‘โ„“,๐œ–(๎€œ๐œ‘)=ฮฃ1๐‘โ„“,๐œ–(๐œ‰)๐œ‘(๐œ‰)d๐œ‰,๐‘โ„“,๐œ–(๎€œ๐œ‘)=ฮฃ1๐‘โ„“,๐œ–(๐œ‰)๐œ‘(๐œ‰)d๐‘๐œ‰,โˆ—โ„“,๐œ–๎€œ(๐œ‘)=ฮฃ1๐‘โˆ—โ„“,๐œ–(๐œ‰)๐œ‘(๐œ‰)d๐œ‰,๐‘โˆ—โ„“,๐œ–๎€œ(๐œ‘)=ฮฃ1๐‘โˆ—โ„“,๐œ–(๐œ‰)๐œ‘(๐œ‰)d๐œ‰(2.18) are bounded operators in ๐”‰ such that โ€–โ€–๐‘โ™ฏโ„“,๐œ–โ€–โ€–=โ€–โ€–๐‘(๐œ‘)โ™ฏโ„“,๐œ–โ€–โ€–(๐œ‘)=โ€–๐œ‘โ€–๐ฟ2,(2.19) where ๐‘โ™ฏ (resp., ๐‘โ™ฏ) is ๐‘ (resp., ๐‘) or ๐‘โˆ— (resp., ๐‘โˆ—).

The operators ๐‘โ™ฏโ„“,๐œ–(๐œ‘) and ๐‘โ™ฏโ„“,๐œ–(๐œ‘) satisfy similar anticommutaion relations (see, e.g., [28]).

The free Hamiltonian ๐ป0 is given by ๐ป0=๐ป0(1)+๐ป0(2)+๐ป0(3)=3๎“โ„“=1๎“0๐‘ฅ0200๐‘‘๐œ–=ยฑ๎€œ๐‘คโ„“(1)๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1+3๎“โ„“=1๎“0๐‘ฅ0200๐‘‘๐œ–=ยฑ๎€œ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2+๎“๐œ–=ยฑ๎€œ๐‘ค(3)๎€ท๐œ‰3๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3,(2.20) where ๐‘คโ„“(1)๎€ท๐œ‰1๎€ธ=๎‚€||๐‘1||2+๐‘š2โ„“๎‚1/2,with0<๐‘š1<๐‘š2<๐‘š3,๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ=||๐‘2||,๐‘ค(3)๎€ท๐œ‰3๎€ธ=๎‚€||๐‘˜||2+๐‘š2๐‘Š๎‚1/2,(2.21) where ๐‘š๐‘Š is the mass of the bosons ๐‘Š+ and ๐‘Šโˆ’ such that ๐‘š๐‘Š>๐‘š3.

The spectrum of ๐ป0 is [0,โˆž) and 0 is a simple eigenvalue with ฮฉ as eigenvector. The set of thresholds of ๐ป0, denoted by ๐‘‡, is given by ๎€ฝ๐‘‡=๐‘๐‘š1+๐‘ž๐‘š2+๐‘Ÿ๐‘š3+๐‘ ๐‘š๐‘Š;(๐‘,๐‘ž,๐‘Ÿ,๐‘ )โˆˆโ„•4๎€พ,,๐‘+๐‘ž+๐‘Ÿ+๐‘ โ‰ฅ1(2.22) and each set [๐‘ก,โˆž), ๐‘กโˆˆ๐‘‡, is a branch of absolutely continuous spectrum for ๐ป0.

The interaction, denoted by ๐ป๐ผ, is given by ๐ป๐ผ=2๎“๐›ผ=1๐ป๐ผ(๐›ผ),(2.23) where ๐ป๐ผ(1)=3๎“โ„“=1๎“0๐‘ฅ0200๐‘‘๐œ–โ‰ ๐œ–โ€ฒ๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3+3๎“โ„“=1๎“0๐‘ฅ0200๐‘‘๐œ–โ‰ ๐œ–โ€ฒ๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3)๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1d๐œ‰2d๐œ‰3,๐ป๐ผ(2)=3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3+3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1d๐œ‰2d๐œ‰3.(2.24) The kernels ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,โ‹…,โ‹…), ๐›ผ=1,2, are supposed to be functions.

The total Hamiltonian is then ๐ป=๐ป0+๐‘”๐ป๐ผ,๐‘”>0,(2.25) where ๐‘” is a coupling constant.

The operator ๐ป๐ผ(1) describes the decay of the bosons ๐‘Š+ and ๐‘Šโˆ’ into leptons. Because of ๐ป๐ผ(2) the bare vacuum will not be an eigenvector of the total Hamiltonian for every ๐‘”>0 as we expect from the physics.

Every kernel ๐บโ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3), computed in theoretical physics, contains a ๐›ฟ-distribution because of the conservation of the momentum (see [1] and [24, Sectionโ€‰โ€‰4.4]). In what follows, we approximate the singular kernels by square integrable functions.

Thus, from now on, the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ are supposed to satisfy the following hypothesis.

Hypothesis 2.1. For ๐›ผ=1,2, โ„“=1,2,3, ๐œ–,๐œ–๎…ž=ยฑ, we assume ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธโˆˆ๐ฟ2๎€ทฮฃ1ร—ฮฃ1ร—ฮฃ2๎€ธ.(2.26)

Remark 2.2. A similar model can be written down for the weak decay of pions ๐œ‹โˆ’ and ๐œ‹+ (see [1, Sectionโ€‰โ€‰6.2]).

Remark 2.3. The total Hamiltonian is more general than the one involved in the theory of weak interactions because, in the Standard Model, neutrinos have helicity โˆ’1/2 and antineutrinos have helicity 1/2.
In the physical case, the Fock space, denoted by ๐”‰๎…ž, is isomorphic to ๐”‰๎…ž๐ฟโŠ—๐”‰๐‘Š, with ๐”‰๎…ž๐ฟ=3๎ทโ„“=1๐”‰๎…žโ„“,๐”‰๎…žโ„“=๎ƒฉ2๎ท๐‘Ž๐ฟ2๎€ทฮฃ1๎€ธ๎ƒชโŠ—๎ƒฉ2๎ท๐‘Ž๐ฟ2๎€ทโ„3๎€ธ๎ƒช.(2.27) The free Hamiltonian, now denoted by ๐ป๎…ž0, is then given by ๐ป๎…ž0=3๎“โ„“=1๎“๐œ–=ยฑ๎€œ๐‘คโ„“(1)๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1+3๎“โ„“=1๎“๐œ–=ยฑ๎€œโ„3||๐‘2||๐‘โˆ—โ„“,๐œ–๎€ท๐‘2๎€ธ๐‘โ„“,๐œ–๎€ท๐‘2๎€ธd๐‘2+๎“๐œ–=ยฑ๎€œ๐‘ค(3)๎€ท๐œ‰3๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3,(2.28) and the interaction, now denoted by ๐ป๎…ž๐ผ, is the one obtained from ๐ป๐ผ by supposing that ๐บ(๐›ผ)(๐œ‰1,(๐‘2,๐‘ 2),๐œ‰3)=0 if ๐‘ 2=๐œ–(1/2). The total Hamiltonian, denoted by ๐ป๎…ž, is then given by ๐ป๎…ž=๐ป๎…ž0+๐‘”๐ป๎…ž๐ผ. The results obtained in this paper for ๐ป hold true for ๐ป๎…ž with obvious modifications.

Under Hypothesis 2.1 a well-defined operator on ๐”‡ corresponds to the formal interaction ๐ป๐ผ as it follows.

The formal operator ๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3(2.29) is defined as a quadratic form on (๐”‡โ„“โŠ—๐”‡๐‘Š)ร—(๐”‡โ„“โŠ—๐”‡๐‘Š) as ๎€œ๎‚€๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐œ“,๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธ๐œ™๎‚d๐œ‰1d๐œ‰2d๐œ‰3,(2.30) where ๐œ“, ๐œ™โˆˆ๐”‡โ„“โŠ—๐”‡๐‘Š.

By mimicking the proof of [29, Theorem X.44], we get a closed operator, denoted by ๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ, associated with the quadratic form such that it is the unique operator in ๐”‰โ„“โŠ—๐”‰๐‘Š such that ๐”‡โ„“โŠ—๐”‡๐‘ŠโŠ‚๐’Ÿ(๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ) is a core for ๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and ๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ=๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3(2.31) as quadratic forms on (๐”‡โ„“โŠ—๐”‡๐‘Š)ร—(๐”‡โ„“โŠ—๐”‡๐‘Š).

Similarly for the operator (๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ—, we have the equality as quadratic forms ๎‚€๐ป(1)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ๎‚โˆ—=๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3)๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1d๐œ‰2d๐œ‰3.(2.32)

Again, there exists two closed operators ๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and (๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ— such that ๐”‡โ„“โŠ—๐”‡๐‘ŠโŠ‚๐’Ÿ(๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ), ๐”‡โ„“โŠ—๐”‡๐‘ŠโŠ‚๐’Ÿ((๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ—), and ๐”‡โ„“โŠ—๐”‡๐‘Š is a core for ๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and (๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ— and such that ๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ=๎€œ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3,๎‚€๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ๎‚โˆ—=๎€œ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1d๐œ‰2d๐œ‰3(2.33) as quadratic forms on (๐”‡โ„“โŠ—๐”‡๐‘Š)ร—(๐”‡โ„“โŠ—๐”‡๐‘Š).

We will still denote by ๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and (๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ— (๐›ผ=1,2) their extensions to ๐”‰. The set ๐”‡ is then a core for ๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and (๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ—.

Thus ๐ป=๐ป0๎“+๐‘”3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎‚€๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ+๎‚€๐ป(2)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ๎‚โˆ—๎‚(2.34) is a symmetric operator defined on ๐”‡.

We now want to prove that ๐ป is essentially self-adjoint on ๐”‡ by showing that ๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ and (๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ)โˆ— are relatively ๐ป0-bounded.

Once again, as above, for almost every ๐œ‰3โˆˆฮฃ2, there exists closed operators in ๐”‰๐ฟ, denoted by ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3) and (๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3))โˆ— such that ๐ต(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎€œ=โˆ’๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3)๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธd๐œ‰1d๐œ‰2,๎‚€๐ต(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—=๎€œ๐บ(1)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธd๐œ‰1d๐œ‰2,๐ต(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ=๎€œ๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธd๐œ‰1d๐œ‰2,๎‚€๐ต(2)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—๎€œ=โˆ’๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3)๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธd๐œ‰1d๐œ‰2(2.35) as quadratic forms on ๐”‡โ„“ร—๐”‡โ„“.

We have that ๐”‡โ„“โŠ‚๐’Ÿ(๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3)) (resp., ๐”‡โ„“โŠ‚๐’Ÿ((๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3))โˆ—) is a core for ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3) (resp., for (๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3))โˆ—). We still denote by ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3)) and (๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3))โˆ—) their extensions to ๐”‰๐ฟ.

It then follows that the operator ๐ป๐ผ with domain ๐”‡ is symmetric and can be written in the following form: ๐ป๐ผ=๎“3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎‚€๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ+๎‚€๐ป(๐›ผ)๐ผ,โ„“,๐œ–,๐œ–โ€ฒ๎‚โˆ—๎‚=๎“3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธโŠ—๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3+๎“3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—โŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3.(2.36) Let ๐‘โ„“ denote the operator number of massive leptons โ„“ in ๐”‰โ„“, that is, ๐‘โ„“=๎“๐œ–๎€œ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1.(2.37) The operator ๐‘โ„“ is a positive self-adjoint operator in ๐”‰โ„“. We still denote by ๐‘โ„“ its extension to ๐”‰๐ฟ. The set ๐”‡๐ฟ is a core for ๐‘โ„“.

We then have the following.

Proposition 2.4. For almost every ๐œ‰3โˆˆฮฃ2, ๐’Ÿ(๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3)), ๐’Ÿ((๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3))โˆ—)โŠƒ๐’Ÿ(๐‘โ„“1/2), and for ฮฆโˆˆ๐’Ÿ(๐‘โ„“1/2)โŠ‚๐”‰๐ฟ one has โ€–โ€–๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3โ€–โ€–)ฮฆ๐”‰๐ฟโ‰คโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,โ‹…,๐œ‰3)โ€–โ€–๐ฟ2(ฮฃ1ร—ฮฃ1)โ€–โ€–๐‘โ„“1/2ฮฆโ€–โ€–๐”‰๐ฟ,โ€–โ€–โ€–๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—ฮฆโ€–โ€–โ€–๐”‰๐ฟโ‰คโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,โ‹…,๐œ‰3)โ€–โ€–๐ฟ2(ฮฃ1ร—ฮฃ1)โ€–โ€–๐‘โ„“1/2ฮฆโ€–โ€–๐”‰๐ฟ.(2.38)

Proof. The estimates (2.38) are examples of ๐‘๐œ estimates (see [25]). The proof is quite similar to the proof of [20, Propositionโ€‰โ€‰3.7]. Details can be found in [27] but are omitted here.

Let ๐ป(3)0,๐œ–=๎€œ๐‘ค(3)๎€ท๐œ‰3๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3.(2.39) Then ๐ป(3)0,๐œ– is a self-adjoint operator in ๐”‰๐‘Š, and ๐”‡๐‘Š is a core for ๐ป(3)0,๐œ–.

We get the following.

Proposition 2.5. One has โ€–โ€–โ€–๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—โŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3ฮจโ€–โ€–โ€–2โ‰คโŽ›โŽœโŽœโŽœโŽ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2๐‘ค(3)๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3โŽžโŽŸโŽŸโŽŸโŽ โ€–โ€–โ€–๎€ท๐‘โ„“๎€ธ+11/2โŠ—๎‚€๐ป(3)0,๐œ–๎‚1/2ฮจโ€–โ€–โ€–2,(2.40)โ€–โ€–โ€–๎€œ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3)โŠ—๐‘Žโˆ—๐œ–(๐œ‰3)d๐œ‰3ฮจโ€–โ€–โ€–2โ‰คโŽ›โŽœโŽœโŽœโŽ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2๐‘ค(3)๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3โŽžโŽŸโŽŸโŽŸโŽ โ€–โ€–โ€–๎€ท๐‘โ„“๎€ธ+11/2โŠ—๎‚€๐ป(3)0,๐œ–๎‚1/2ฮจโ€–โ€–โ€–2+๎‚ต๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2d๐œ‰1d๐œ‰2d๐œ‰3๐œ‚โ€–โ€–๎€ท๐‘๎‚ถ๎‚ตโ„“๎€ธ+11/2โ€–โ€–โŠ—1ฮจ2+14๐œ‚โ€–ฮจโ€–2๎‚ถ(2.41) for every ฮจโˆˆ๐’Ÿ(๐ป0) and every ๐œ‚>0.

Proof. Suppose that ฮจโˆˆ๐’Ÿ(๐‘โ„“1/2)๎โŠ—๐’Ÿ((๐ป(3)0,๐œ–)1/2). Let ฮจ๐œ–๎€ท๐œ‰3๎€ธ=๐‘ค(3)๎€ท๐œ‰3๎€ธ1/2๎‚€๎€ท๐‘โ„“๎€ธ+11/2โŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธ๎‚ฮฆ.(2.42) We have ๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—โŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3๎€œฮจ=ฮฃ21๎€ท๐‘ค(3)๎€ท๐œ‰3๎€ธ๎€ธ1/2๐ต๎‚€๎‚€(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—๎€ท๐‘โ„“๎€ธ+1โˆ’1/2๎‚ฮจโŠ—1๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3.(2.43) Therefore, for ฮจโˆˆ๐’Ÿ(๐‘โ„“1/2)๎โŠ—๐’Ÿ((๐ป(3)0,๐œ–)1/2), (2.40) follows from Proposition 2.4.
We now have โ€–โ€–โ€–๎€œ๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3)โŠ—๐‘Žโˆ—๐œ–(๐œ‰3)ฮจd๐œ‰3โ€–โ€–โ€–2๐”‰=๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธโŠ—๐‘Ž๐œ–๎€ท๐œ‰๎…ž3๎€ธฮจ,๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎…ž3๎€ธโŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธฮจ๎‚d๐œ‰3d๐œ‰๎…ž3+๎€œโ€–โ€–๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰3๎‚ฮจโ€–โ€–)โŠ—12d๐œ‰3,(2.44)๎€œฮฃ2ร—ฮฃ2๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธโŠ—๐‘Ž๐œ–๎€ท๐œ‰๎…ž3๎€ธฮจ,๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎…ž3๎€ธโŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธฮจ๎‚d๐œ‰3d๐œ‰๎…ž3=๎€œฮฃ2ร—ฮฃ21๐‘ค(3)๎€ท๐œ‰3๎€ธ1/2๐‘ค(3)๎€ท๐œ‰๎…ž3๎€ธ1/2ร—๐ต๎‚€๎‚€(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๐‘๎€ธ๎€ทโ„“๎€ธ+1โˆ’1/2๎‚ฮจโŠ—1๐œ–๎€ท๐œ‰๎…ž3๎€ธ,๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎…ž3๐‘๎€ธ๎€ทโ„“๎€ธ+1โˆ’1/2๎‚ฮจโŠ—1๐œ–๎€ท๐œ‰3๎€ธ๎‚d๐œ‰3d๐œ‰๎…ž3โ‰ค๎ƒฉ๎€œฮฃ21๐‘ค(3)๎€ท๐œ‰3๎€ธ1/2โ€–โ€–๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๐‘๎€ธ๎€ทโ„“๎€ธ+1โˆ’1/2โ€–โ€–๐”‰๐ฟโ€–โ€–ฮจ๐œ–๎€ท๐œ‰3๎€ธโ€–โ€–d๐œ‰3๎ƒช2โ‰ค๎ƒฉ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2||๐บ(๐›ผ)๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ||2๐‘ค(3)๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3๎ƒชโ€–โ€–โ€–๎€ท๐‘โ„“๎€ธ+11/2โŠ—๎‚€๐ป(3)0,๐œ–๎‚1/2ฮจโ€–โ€–โ€–2.(2.45) Furthermore ๎€œฮฃ2โ€–โ€–๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚ฮจโ€–โ€–โŠ—12d๐œ‰3=๎€œฮฃ2โ€–โ€–๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๐‘๎€ธ๎€ทโ„“๎€ธ+1โˆ’1/2๎€ท๐‘โŠ—1๎‚๎‚€โ„“๎€ธ+11/2๎‚ฮจโ€–โ€–โŠ—12d๐œ‰3โ‰ค๎‚ต๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2d๐œ‰1d๐œ‰2d๐œ‰3๐œ‚โ€–โ€–๎€ท๐‘๎‚ถ๎‚ตโ„“๎€ธฮจโ€–โ€–+12+14๐œ‚โ€–ฮจโ€–2๎‚ถ(2.46) for every ๐œ‚>0.
By (2.40), (2.45), and (2.46), we finally get (2.41) for every ฮจโˆˆ๐’Ÿ(๐‘โ„“1/2)๎โŠ—๐’Ÿ(๐ป(3)0,๐œ–). It then follows that (2.40) and (2.41) are verified for every ฮจโˆˆ๐’Ÿ(๐ป0).

We now prove that ๐ป is a self-adjoint operator in ๐”‰ for ๐‘” sufficiently small.

Theorem 2.6. Let ๐‘”1>0 be such that 3๐‘”21๐‘š๐‘Š๎ƒฉ1๐‘š21๎ƒช๎“+13๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2๐ฟ2(ฮฃ1ร—ฮฃ1ร—ฮฃ2)<1.(2.47) Then for every ๐‘” satisfying ๐‘”โ‰ค๐‘”1, ๐ป is a self-adjoint operator in ๐”‰ with domain ๐’Ÿ(๐ป)=๐’Ÿ(๐ป0), and ๐”‡ is a core for ๐ป.

Proof. Let ฮจ be in ๐”‡. We have โ€–โ€–๐ป๐ผฮจโ€–โ€–2โ‰ค12๎“3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎‚ปโ€–โ€–โ€–๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โˆ—โŠ—๐‘Ž๐œ–๎€ท๐œ‰3๎€ธฮจd๐œ‰3โ€–โ€–โ€–2+โ€–โ€–โ€–๎€œ๎‚€๐ต(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰3๎€ธ๎‚โŠ—๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธฮจd๐œ‰3โ€–โ€–โ€–2๎‚ผ.(2.48) Note that โ€–โ€–๐ป(3)0,๐œ–ฮจโ€–โ€–โ‰คโ€–โ€–๐ป0(3)ฮจโ€–โ€–โ‰คโ€–โ€–๐ป0ฮจโ€–โ€–,โ€–โ€–๐‘โ„“ฮจโ€–โ€–โ‰ค1๐‘šโ„“โ€–โ€–๐ป0,โ„“ฮจโ€–โ€–โ‰ค1๐‘š1โ€–โ€–๐ป0,โ„“ฮจโ€–โ€–โ‰ค1๐‘š1โ€–โ€–๐ป0ฮจโ€–โ€–,(2.49) where ๐ป0,โ„“=๎“๐œ–๎€œ๐‘คโ„“(1)๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1+๎“๐œ–๎€œ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2.(2.50) We further note that โ€–โ€–โ€–๎€ท๐‘โ„“๎€ธ+11/2โŠ—๎‚€๐ป(3)0,๐œ–๎‚1/2ฮจโ€–โ€–โ€–2โ‰ค12๎ƒฉ1๐‘š21๎ƒชโ€–โ€–๐ป+10ฮจโ€–โ€–2+๐›ฝ2๐‘š21โ€–โ€–๐ป0ฮจโ€–โ€–2+๎‚ต12+1๎‚ถโ€–8๐›ฝฮจโ€–2(2.51) for ๐›ฝ>0, and ๐œ‚โ€–โ€–๐‘๎€ท๎€ทโ„“๎€ธ๎€ธฮจโ€–โ€–+1โŠ—12+14๐œ‚โ€–ฮจโ€–2โ‰ค๐œ‚๐‘š21โ€–โ€–๐ป0ฮจโ€–โ€–2+๐œ‚๐›ฝ๐‘š21โ€–โ€–๐ป0ฮจโ€–โ€–2๎‚ต1+๐œ‚1+๎‚ถ4๐›ฝโ€–ฮจโ€–2+14๐œ‚โ€–ฮจโ€–2.(2.52) Combining (2.48) with (2.40), (2.41), (2.51), and (2.52) we get for ๐œ‚>0, ๐›ฝ>0โ€–โ€–๐ป๐ผฮจโ€–โ€–2โŽ›โŽœโŽœโŽ๎“โ‰ค63๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2โŽžโŽŸโŽŸโŽ ร—๎ƒฉ12๐‘š๐‘Š๎ƒฉ1๐‘š21๎ƒชโ€–โ€–๐ป+10ฮจโ€–โ€–2+๐›ฝ2๐‘š๐‘Š๐‘š21โ€–โ€–๐ป0ฮจโ€–โ€–2+12๐‘š๐‘Š๎‚ต11+๎‚ถ4๐›ฝโ€–ฮจโ€–2๎ƒชโŽ›โŽœโŽœโŽ๎“+123๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2โŽžโŽŸโŽŸโŽ ๎ƒฉ๐œ‚๐‘š21โ€–โ€–๐ป(1+๐›ฝ)0ฮจโ€–โ€–2+๎‚ต๐œ‚๎‚ต11+๎‚ถ+14๐›ฝ๎‚ถ4๐œ‚โ€–ฮจโ€–2๎ƒช,(2.53) by noting ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2||๐บโ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ||2๐‘ค(3)๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰2d๐œ‰3โ‰ค1๐‘š๐‘Šโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2.(2.54) By (2.53) the theorem follows from the Kato-Rellich theorem.

3. Main Results

In the sequel, we will make the following additional assumptions on the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ.

Hypothesis 3.1. (i) For ๐›ผ=1,2, โ„“=1,2,3, ๐œ–,๐œ–๎…ž=ยฑ, ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2||๐‘2||2d๐œ‰1d๐œ‰2d๐œ‰3<โˆž.(3.1)
(ii) There exists ๐ถ>0 such that for ๐›ผ=1,2, โ„“=1,2,3, ๐œ–,๐œ–๎…ž=ยฑ, ๎‚ต๎€œฮฃ1ร—{|๐‘2|โ‰ค๐œŽ}ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2d๐œ‰1d๐œ‰2d๐œ‰3๎‚ถ1/2โ‰ค๐ถ๐œŽ2.(3.2)
(iii) For ๐›ผ=1,2, โ„“=1,2,3, ๐œ–,๐œ–๎…ž=ยฑ, and ๐‘–,๐‘—=1,2,3(iii.a)๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๎‚ƒ๎€ท๐‘2โ‹…โˆ‡๐‘2๎€ธ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚„(๐œ‰1,๐œ‰2,๐œ‰3)|||2d๐œ‰1d๐œ‰2d๐œ‰3(<โˆž,iii.b)๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2๐‘22,๐‘–๐‘22,๐‘—|||||๐œ•2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๐œ•๐‘2,๐‘–๐œ•๐‘2,๐‘—(๐œ‰1,๐œ‰2,๐œ‰3)|||||2d๐œ‰1d๐œ‰2d๐œ‰3<โˆž.(3.3)
(iv) There exists ฮ›>๐‘š1 such that for ๐›ผ=1,2, โ„“=1,2,3, ๐œ–,๐œ–๎…ž=ยฑ, ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ=0if||๐‘2||โ‰ฅฮ›.(3.4)

Remark 3.2. Hypothesis 3.1(ii) is nothing but an infrared regularization of the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ. In order to satisfy this hypothesis it is, for example, sufficient to suppose that ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ=||๐‘2||1/2๎‚๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ,(3.5) where ๎‚๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ is a smooth function of (๐‘1,๐‘2,๐‘3) in the Schwartz space.
Hypothesis 3.1(iv), which is a sharp ultraviolet cutoff, is actually not necessary, and can be removed at the expense of some additional technicalities. However, in order to simplify the proof of Proposition 3.5, we will leave it.

Our first result is devoted to the existence of a ground state for ๐ป together with the location of the spectrum of ๐ป and of its absolutely continuous spectrum when ๐‘” is sufficiently small.

Theorem 3.3. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1(i). Then there exists 0<๐‘”2โ‰ค๐‘”1 such that ๐ป has a unique ground state for ๐‘”โ‰ค๐‘”2. Moreover ๐œŽ(๐ป)=๐œŽac[(๐ป)=inf๐œŽ(๐ป),โˆž)(3.6) with inf๐œŽ(๐ป)โ‰ค0.

According to Theorem 3.3 the ground state energy ๐ธ=inf๐œŽ(๐ป) is a simple eigenvalue of ๐ป, and our main results are concerned with a careful study of the spectrum of ๐ป above the ground state energy. The spectral theory developed in this work is based on the conjugated operator method as described in [5, 6, 30]. Our choice of the conjugate operator denoted by ๐ด is the second quantized dilation generator for the neutrinos.

Let ๐‘Ž denote the following operator in ๐ฟ2(ฮฃ1): 1๐‘Ž=2๎€ท๐‘2โ‹…๐‘–โˆ‡๐‘2+๐‘–โˆ‡๐‘2โ‹…๐‘2๎€ธ.(3.7) The operator ๐‘Ž is essentially self-adjoint on ๐ถโˆž0(โ„3,โ„‚2). Its second quantized version dฮ“(๐‘Ž) is a self-adjoint operator in ๐”‰๐‘Ž(๐ฟ2(ฮฃ1)). From the definition (2.8) of the space ๐”‰โ„“, the following operator in ๐”‰โ„“๐ดโ„“=1โŠ—1โŠ—dฮ“(๐‘Ž)โŠ—1+1โŠ—1โŠ—1โŠ—dฮ“(๐‘Ž)(3.8) is essentially self-adjoint on ๐”‡๐ฟ.

Let now ๐ด be the following operator in ๐”‰๐ฟ: ๐ด=๐ด1โŠ—12โŠ—13+11โŠ—๐ด2โŠ—13+11โŠ—12โŠ—๐ด3.(3.9) Then ๐ด is essentially self-adjoint on ๐”‡๐ฟ.

We will denote again by ๐ด its extension to ๐”‰. Thus ๐ด is essentially self-adjoint on ๐”‡ and we still denote by ๐ด its closure.

We also set ๎€ทโŸจ๐ดโŸฉ=1+๐ด2๎€ธ1/2.(3.10)

We then have the following.

Theorem 3.4. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1. For any ๐›ฟ>0 satisfying 0<๐›ฟ<๐‘š1 there exists 0<๐‘”๐›ฟโ‰ค๐‘”2 such that, for 0<๐‘”โ‰ค๐‘”๐›ฟ, the following points are satisfied. (i)The spectrum of ๐ป in (inf๐œŽ(๐ป),๐‘š1โˆ’๐›ฟ] is purely absolutely continuous.(ii)Limiting absorption principle.
For every ๐‘ >1/2 and ๐œ‘, ๐œ“ in ๐”‰, the limits lim๐œ€โ†’0๎€ท๐œ‘,โŸจ๐ดโŸฉโˆ’๐‘ (๐ปโˆ’๐œ†ยฑ๐‘–๐œ€)โŸจ๐ดโŸฉโˆ’๐‘ ๐œ“๎€ธ(3.11) exist uniformly for ๐œ† in any compact subset of (inf๐œŽ(๐ป),๐‘š1โˆ’๐›ฟ]. (iii) Pointwise decay in time.
Suppose ๐‘ โˆˆ(1/2,1) and ๐‘“โˆˆ๐ถโˆž0(โ„) with supp๐‘“โŠ‚(inf๐œŽ(๐ป),๐‘š1โˆ’๐›ฟ). Then โ€–โ€–โŸจ๐ดโŸฉโˆ’๐‘ eโˆ’๐‘–๐‘ก๐ป๐‘“(๐ป)โŸจ๐ดโŸฉโˆ’๐‘ โ€–โ€–๎€ท๐‘ก=๐’ช1/2โˆ’๐‘ ๎€ธ(3.12) as ๐‘กโ†’โˆž.

The proof of Theorem 3.4 is based on a positive commutator estimate, called the Mourre estimate, and on a regularity property of ๐ป with respect to ๐ด (see [5, 6, 30]). According to [4], the main ingredient of the proof is auxiliary operators associated with infrared cutoff Hamiltonians with respect to the momenta of the neutrinos that we now introduce.

Let ๐œ’0(โ‹…), ๐œ’โˆž(โ‹…)โˆˆ๐ถโˆž(โ„,[0,1]) with ๐œ’0=1 on (โˆ’โˆž,1], ๐œ’โˆž=1 on [2,โˆž) and ๐œ’02+๐œ’โˆž2=1.

For ๐œŽ>0 we set ๐œ’๐œŽ(๐‘)=๐œ’0๎‚ต||๐‘||๐œŽ๎‚ถ,๐œ’๐œŽ(๐‘)=๐œ’โˆž๎‚ต||๐‘||๐œŽ๎‚ถ,๎‚๐œ’๐œŽ(๐‘)=1โˆ’๐œ’๐œŽ(๐‘),(3.13) where ๐‘โˆˆโ„3.

The operator ๐ป๐ผ,๐œŽ is the interaction given by (2.23) and (2.24) and associated with the kernels ๎‚๐œ’๐œŽ(๐‘2)๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,๐œ‰2,๐œ‰3). We then set ๐ป๐œŽโˆถ=๐ป0+๐‘”๐ป๐ผ,๐œŽ.(3.14)

Let ฮฃ1,๐œŽ=ฮฃ1โˆฉ๐‘๎€ฝ๎€ท2,๐‘ 2๎€ธ;||๐‘2||๎€พ,ฮฃ<๐œŽ๐œŽ1=ฮฃ1โˆฉ๐‘๎€ฝ๎€ท2,๐‘ 2๎€ธ;||๐‘2||๎€พ๐”‰โ‰ฅ๐œŽโ„“,2,๐œŽ=๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ1,๐œŽ๎€ธ๎€ธโŠ—๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ1,๐œŽ,๐”‰๎€ธ๎€ธ๐œŽโ„“,2=๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ๐œŽ1๎€ธ๎€ธโŠ—๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ๐œŽ1,๐”‰๎€ธ๎€ธโ„“,2=๐”‰โ„“,2,๐œŽโŠ—๐”‰๐œŽโ„“,2,๐”‰โ„“,1=2๎ท๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ1.๎€ธ๎€ธ(3.15) The space ๐”‰โ„“,1 is the Fock space for the massive leptons โ„“, and ๐”‰โ„“,2 is the Fock space for the neutrinos and antineutrinos โ„“.

Set ๐”‰๐œŽโ„“=๐”‰โ„“,1โŠ—๐”‰๐œŽโ„“,2๐”‰โ„“,๐œŽ=๐”‰โ„“,2,๐œŽ.(3.16) We have ๐”‰โ„“โ‰ƒ๐”‰๐œŽโ„“โŠ—๐”‰โ„“,๐œŽ.(3.17) Set ๐”‰๐œŽ๐ฟ=3๎ทโ„“=1๐”‰๐œŽโ„“๐”‰๐ฟ,๐œŽ=3๎ทโ„“=1๐”‰โ„“,๐œŽ.(3.18) We have ๐”‰๐ฟโ‰ƒ๐”‰๐œŽ๐ฟโŠ—๐”‰๐ฟ,๐œŽ.(3.19) Set ๐”‰๐œŽ=๐”‰๐œŽ๐ฟโŠ—๐”‰๐‘Š.(3.20) We have ๐”‰โ‰ƒ๐”‰๐ฟ,๐œŽโŠ—๐”‰๐œŽ.(3.21) Set ๐ป0(1)=3๎“โ„“=1๎“๐œ–=ยฑ๎€œ๐‘คโ„“(1)๎€ท๐œ‰1๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰1๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰1๎€ธd๐œ‰1,๐ป0(2)=3๎“โ„“=1๎“๐œ–=ยฑ๎€œ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2,๐ป0(3)=๎“๐œ–=ยฑ๎€œ๐‘ค(3)๎€ท๐œ‰3๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰3,๐ป0(2)๐œŽ=3๎“โ„“=1๎“๐œ–=ยฑ๎€œ|๐‘2|>๐œŽ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2,๐ป(2)0,๐œŽ=3๎“โ„“=1๎“๐œ–=ยฑ๎€œ|๐‘2|โ‰ค๐œŽ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2.(3.22) We have on ๐”‰๐œŽโŠ—๐”‰๐œŽ๐ป0(2)=๐ป0(2)๐œŽโŠ—1๐œŽ+1๐œŽโŠ—๐ป(2)0,๐œŽ.(3.23) Here, 1๐œŽ (resp., 1๐œŽ) is the identity operator on ๐”‰๐œŽ (resp., ๐”‰๐œŽ).

Define ๐ป๐œŽ=๐ป๐œŽ||๐”‰๐œŽ,๐ป๐œŽ0=๐ป0||๐”‰๐œŽ.(3.24)

We get ๐ป๐œŽ=๐ป0(1)+๐ป0(2)๐œŽ+๐ป0(3)+๐‘”๐ป๐ผ,๐œŽon๐”‰๐œŽ,๐ป๐œŽ=๐ป๐œŽโŠ—1๐œŽ+1๐œŽโŠ—๐ป(2)0,๐œŽon๐”‰๐œŽโŠ—๐”‰๐œŽ.(3.25) In order to implement the conjugate operator theory, we have to show that ๐ป๐œŽ has a gap in its spectrum above its ground state.

We now set, for ๐›ฝ>0 and ๐œ‚>0, ๐ถ๐›ฝ๐œ‚=๎‚ต3๐‘š๐‘Š๎‚ต11+๐‘š12๎‚ถ+3๐›ฝ๐‘š๐‘Š๐‘š12+12๐œ‚๐‘š12๎‚ถ(1+๐›ฝ)1/2,๐ต๐›ฝ๐œ‚=๎‚ต3๐‘š๐‘Š๎‚ต11+๎‚ถ๎‚ต๐œ‚๎‚ต14๐›ฝ+121+๎‚ถ+14๐›ฝ4๐œ‚๎‚ถ๎‚ถ1/2.(3.26) Let ๎‚€๐บ๐บ=(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚(โ‹…,โ‹…,โ‹…)๐›ผ=1,2;โ„“=1,2,3;๐œ–,๐œ–โ€ฒ=ยฑ,๐œ–โ‰ ๐œ–โ€ฒ,(3.27) and set โŽ›โŽœโŽœโŽ๎“๐พ(๐บ)=3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2๐ฟ2(ฮฃ1ร—ฮฃ1ร—ฮฃ2)โŽžโŽŸโŽŸโŽ 1/2.(3.28) Let ๎‚๐ถ๐›ฝ๐œ‚=๐ถ๐›ฝ๐œ‚๎‚ต๐‘”1+1๐พ(๐บ)๐ถ๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๎‚ถ,๎‚๐ต๐›ฝ๐œ‚=๎‚ต๐‘”1+1๐พ(๐บ)๐ถ๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๎‚ต๐‘”2+1๐พ(๐บ)๐ต๐›ฝ๐œ‚๐ถ๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๐ต๎‚ถ๎‚ถ๐›ฝ๐œ‚.(3.29)

Let ๎‚๐พโŽ›โŽœโŽœโŽœโŽ๎“(๐บ)=3๐›ผ=1,2๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œฮฃ1ร—ฮฃ1ร—ฮฃ2|||๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2|๐‘2|2d๐œ‰1d๐œ‰2d๐œ‰3โŽžโŽŸโŽŸโŽŸโŽ 1/2.(3.30) Let ๐›ฟโˆˆโ„ be such that 0<๐›ฟ<๐‘š1.(3.31)

We set ๎‚๎‚ต๐ท=sup4ฮ›๐›พ2๐‘š1๎‚ถ๎‚๎‚€โˆ’๐›ฟ,1๐พ(๐บ)2๐‘š1๎‚๐ถ๐›ฝ๐œ‚+๎‚๐ต๐›ฝ๐œ‚๎‚,(3.32) where ฮ›>๐‘š1 has been introduced in Hypothesis 3.1(iv).

Let us define the sequence (๐œŽ๐‘›)๐‘›โ‰ฅ0 by ๐œŽ0๐œŽ=ฮ›,1=๐‘š1โˆ’๐›ฟ2,๐œŽ2=๐‘š1โˆ’๐›ฟ=๐›พ๐œŽ1,๐œŽ๐‘›+1=๐›พ๐œŽ๐‘›,๐‘›โ‰ฅ1,(3.33) where ๐›พ=1โˆ’๐›ฟ/(2๐‘š1โˆ’๐›ฟ).

Let ๐‘”๐›ฟ(1) be such that 0<๐‘”๐›ฟ(1)๎‚ต<inf1,๐‘”1,๐›พโˆ’๐›พ23๎‚๐ท๎‚ถ.(3.34) For 0<๐‘”โ‰ค๐‘”๐›ฟ(1) we have ๎ƒฉ๎‚๐ท0<๐›พ<1โˆ’3๐‘”๐›พ๎ƒช,(3.35)0<๐œŽ๐‘›+1<๎ƒฉ๎‚๐ท1โˆ’3๐‘”๐›พ๎ƒช๐œŽ๐‘›,๐‘›โ‰ฅ1.(3.36) Set ๐ป๐‘›=๐ป๐œŽ๐‘›;๐ป๐‘›0=๐ป๐œŽ๐‘›0๐ธ,๐‘›โ‰ฅ0,๐‘›=inf๐œŽ(๐ป๐‘›),๐‘›โ‰ฅ0.(3.37) We then get the following.

Proposition 3.5. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1, 3.1(i), and 3.1(iv). Then there exists 0<ฬƒ๐‘”๐›ฟโ‰ค๐‘”๐›ฟ(1) such that, for ๐‘”โ‰คฬƒ๐‘”๐›ฟ and ๐‘›โ‰ฅ1, ๐ธ๐‘› is a simple eigenvalue of ๐ป๐‘› and ๐ป๐‘› does not have spectrum in (๐ธ๐‘›,๐ธ๐‘›๎‚+(1โˆ’3๐‘”๐ท/๐›พ)๐œŽ๐‘›).

The proof of Proposition 3.5 is given in the appendix.

We now introduce the positive commutator estimates and the regularity property of ๐ป with respect to ๐ด in order to prove Theorem 3.4.

The operator ๐ด has to be split into two pieces depending on ๐œŽ.

Let ๐œ‚๐œŽ๎€ท๐‘2๎€ธ=๐œ’2๐œŽ๎€ท๐‘2๎€ธ,๐œ‚๐œŽ๎€ท๐‘2๎€ธ=๐œ’2๐œŽ๎€ท๐‘2๎€ธ,๐‘Ž๐œŽ=๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐‘Ž๐œ‚๐œŽ๎€ท๐‘2๎€ธ,๐‘Ž๐œŽ=๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐‘Ž๐œ‚๐œŽ๎€ท๐‘2๎€ธ.(3.38) Since ๐œ‚2๐œŽ+(๐œ‚๐œŽ)2=1, and [๐œ‚๐œŽ,[๐œ‚๐œŽ,๐‘Ž]]=0=[๐œ‚๐œŽ,[๐œ‚๐œŽ,๐‘Ž]], we obtain (see [4]) ๐‘Ž=๐‘Ž๐œŽ+๐‘Ž๐œŽ.(3.39)

Note that we also have ๐‘Ž๐œŽ=12๎‚€๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2โ‹…๐‘–โˆ‡๐‘2+๐‘–โˆ‡๐‘2โ‹…๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2๎‚,๐‘Ž๐œŽ=12๎‚€๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2โ‹…๐‘–โˆ‡๐‘2+๐‘–โˆ‡๐‘2โ‹…๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2๎‚.(3.40)

The operators ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ are essentially self-adjoint on ๐ถโˆž0(โ„3,โ„‚2) (see [5, Propositionโ€‰โ€‰4.2.3]). We still denote by ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ their closures. If ฬƒ๐‘Ž denotes any of the operator ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ, we have ๎€ฝ๐’Ÿ(ฬƒ๐‘Ž)=๐‘ขโˆˆ๐ฟ2๎€ทฮฃ1๎€ธ;ฬƒ๐‘Ž๐‘ขโˆˆ๐ฟ2๎€ทฮฃ1.๎€ธ๎€พ(3.41)

The operators dฮ“(๐‘Ž), dฮ“(๐‘Ž๐œŽ), and dฮ“(๐‘Ž๐œŽ) are self-adjoint operators in ๐”‰๐‘Ž(๐ฟ2(ฮฃ1)), and we have dฮ“(๐‘Ž)=dฮ“(๐‘Ž๐œŽ)+dฮ“๎€ท๐‘Ž๐œŽ๎€ธ.(3.42)

By (2.8), the following operators in ๐”‰โ„“, denoted by ๐ด๐œŽโ„“ and A๐œŽโ„“, respectively, ๐ด๐œŽโ„“=1โŠ—1โŠ—dฮ“(๐‘Ž๐œŽ)โŠ—1+1โŠ—1โŠ—1โŠ—dฮ“(๐‘Ž๐œŽ๐ด),๐œŽโ„“=1โŠ—1โŠ—dฮ“๎€ท๐‘Ž๐œŽ๎€ธโŠ—1+1โŠ—1โŠ—1โŠ—dฮ“๎€ท๐‘Ž๐œŽ๎€ธ(3.43) are essentially self-adjoint on ๐”‡โ„“.

Let ๐ด๐œŽ and ๐ด๐œŽ be the following two operators in ๐”‰๐ฟ: ๐ด๐œŽ=๐ด๐œŽ1โŠ—12โŠ—13+11โŠ—๐ด๐œŽ2โŠ—13+11โŠ—12โŠ—๐ด๐œŽ3,๐ด๐œŽ=๐ด๐œŽ1โŠ—12โŠ—13+11โŠ—๐ด๐œŽ2โŠ—13+11โŠ—12โŠ—๐ด๐œŽ3.(3.44) The operators ๐ด๐œŽ and ๐ด๐œŽ are essentially self-adjoint on ๐”‡๐ฟ. Still denoting by ๐ด๐œŽ and ๐ด๐œŽ their extensions to ๐”‰, ๐ด๐œŽ and ๐ด๐œŽ are essentially self-adjoint on ๐”‡ and we still denote by ๐ด๐œŽ and ๐ด๐œŽ their closures.

We have ๐ด=๐ด๐œŽ+๐ด๐œŽ.(3.45)

The operators ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ are associated to the following ๐ถโˆž-vector fields in โ„3, respectively: ๐‘ฃ๎€ท๐‘2๎€ธ=๐‘2,๐‘ฃ๐œŽ๎€ท๐‘2๎€ธ=๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2,๐‘ฃ๐œŽ๎€ท๐‘2๎€ธ=๐œ‚๐œŽ๎€ท๐‘2๎€ธ2๐‘2.(3.46) Let ๐’ฑ(๐‘) be any of these vector fields. We have ||||||๐‘||๐’ฑ(๐‘)โ‰คฮ“(3.47) for some ฮ“>0, and we also have ๐’ฑฬƒ๐‘ฃ๎€ท||๐‘||๎€ธ(๐‘)=๐‘,(3.48) where the ฬƒ๐‘ฃ's are defined by (3.46) and (3.48) and fulfil |๐‘|๐›ผ(d๐›ผ/d|๐‘|๐›ผ)ฬƒ๐‘ฃ(|๐‘|) bounded for ๐›ผ=0,1,2.

Let ๐œ“๐‘ก(โ‹…)โˆถโ„3โ†’โ„3 be the corresponding flow generated by ๐’ฑ: dd๐‘ก๐œ“๐‘ก๎€ท๐œ“(๐‘)=๐’ฑ๐‘ก๎€ธ,๐œ“(๐‘)0(๐‘)=๐‘.(3.49)๐œ“๐‘ก(๐‘) is a ๐ถโˆž-flow and we have eโˆ’ฮ“|๐‘ก|||๐‘||โ‰ค||๐œ“๐‘ก||โ‰ค(๐‘)eฮ“|๐‘ก|||๐‘||.(3.50)๐œ“๐‘ก(๐‘) induces a one-parameter group of unitary operators ๐‘ˆ(๐‘ก) in ๐ฟ2(ฮฃ1)โ‰ƒ๐ฟ2(โ„3,โ„‚2) defined by ๎€ท๐œ“(๐‘ˆ(๐‘ก)๐‘“)(๐‘)=๐‘“๐‘ก(๐‘)๎€ธ๎€ทdetโˆ‡๐œ“๐‘ก๎€ธ(๐‘)1/2.(3.51) Let ๐œ™๐‘ก(โ‹…), ๐œ™๐œŽ๐‘ก(โ‹…), and ๐œ™๐œŽ๐‘ก(โ‹…) be the flows associated with the vector fields ๐‘ฃ(โ‹…), ๐‘ฃ๐œŽ(โ‹…), and ๐‘ฃ๐œŽ(โ‹…), respectively.

Let ๐‘ˆ(๐‘ก), ๐‘ˆ๐œŽ(๐‘ก), and ๐‘ˆ๐œŽ(๐‘ก) be the corresponding one-parameter groups of unitary operators in ๐ฟ2(ฮฃ1). The operators ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ are the generators of ๐‘ˆ(๐‘ก), ๐‘ˆ๐œŽ(๐‘ก), and ๐‘ˆ๐œŽ(๐‘ก), respectively, that is, ๐‘ˆ(๐‘ก)=eโˆ’๐‘–๐‘Ž๐‘ก,๐‘ˆ๐œŽ(๐‘ก)=eโˆ’๐‘–๐‘Ž๐œŽ๐‘ก,๐‘ˆ๐œŽ(๐‘ก)=eโˆ’๐‘–๐‘Ž๐œŽ๐‘ก.(3.52)

Let ๐‘ค(2)๎€ท๐œ‰2๎€ธ=๎‚€๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๎‚โ„“=1,2,3,dฮ“๎€ท๐‘ค(2)๎€ธ=3๎“โ„“=1๎“๐œ–๎€œ๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2.(3.53) Let ๐‘‰(๐‘ก) be any of the one-parameter groups ๐‘ˆ(๐‘ก), ๐‘ˆ๐œŽ(๐‘ก), and ๐‘ˆ๐œŽ(๐‘ก). We set ๐‘‰(๐‘ก)๐‘ค(2)๐‘‰(๐‘ก)โˆ—=๎‚€๐‘‰(๐‘ก)๐‘คโ„“(2)๐‘‰(๐‘ก)โˆ—๎‚โ„“=1,2,3,(3.54) and we have ๐‘‰(๐‘ก)๐‘ค(2)๐‘‰(๐‘ก)โˆ—=๐‘ค(2)๎€ท๐œ“๐‘ก๎€ธ.(3.55) Here ๐œ“๐‘ก is the flow associated to ๐‘‰(๐‘ก).

This yields, for any ๐œ‘โˆˆ๐”‡, (see [11, Lemmaโ€‰โ€‰2.8]) eโˆ’๐‘–๐ด๐‘ก๐ป0e๐‘–๐ด๐‘ก๐œ‘โˆ’๐ป0๎€ท๐œ‘=dฮ“๎€ทeโˆ’๐‘–๐‘Ž๐‘ก๐‘ค(2)e๐‘–๐‘Ž๐‘ก๎€ธโˆ’dฮ“๎€ท๐‘ค(2)๐œ‘=๎€ท๎€ธ๎€ธdฮ“๎€ทw(2)โˆ˜๐œ™๐‘กโˆ’๐‘ค(2)๎€ธ๎€ธ๐œ‘,e(3.56)โˆ’๐‘–๐ด๐œŽ๐‘ก๐ป0e๐‘–๐ด๐œŽ๐‘ก๐œ‘โˆ’๐ป0๎€ท๐œ‘=dฮ“๎€ทeโˆ’๐‘–๐‘Ž๐œŽ๐‘ก๐‘ค(2)e๐‘–๐‘Ž๐œŽ๐‘ก๎€ธโˆ’dฮ“๎€ท๐‘ค(2)๐œ‘=๎€ท๎€ธ๎€ธdฮ“๎€ท๐‘ค(2)โˆ˜๐œ™๐œŽ๐‘กโˆ’๐‘ค(2)๎€ธ๎€ธ๐œ‘,e(3.57)โˆ’๐‘–๐ด๐œŽ๐‘ก๐ป0e๐‘–๐ด๐œŽ๐‘ก๐œ‘โˆ’๐ป0๎€ท๐œ‘=dฮ“๎€ทeโˆ’๐‘–๐‘Ž๐œŽ๐‘ก๐‘ค(2)e๐‘–๐‘Ž๐œŽ๐‘ก๎€ธโˆ’dฮ“๎€ท๐‘ค(2)๐œ‘=๎€ท๎€ธ๎€ธdฮ“๎€ท๐‘ค(2)โˆ˜๐œ™๐œŽ๐‘กโˆ’๐‘ค(2)๎€ธ๎€ธ๐œ‘.(3.58)

Proposition 3.6. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypothesis 2.1.
For every ๐‘กโˆˆโ„ one has, for ๐‘”โ‰ค๐‘”1, (i)e๐‘–๐‘ก๐ด๐’Ÿ๎€ท๐ป0๎€ธ=e๐‘–๐‘ก๐ด๎€ท๐ป๐’Ÿ(๐ป)โŠ‚๐’Ÿ0๎€ธ(=๐’Ÿ(๐ป),ii)e๐‘–๐‘ก๐ด๐œŽ๐’Ÿ๎€ท๐ป0๎€ธ=e๐‘–๐‘ก๐ด๐œŽ๎€ท๐ป๐’Ÿ(๐ป)โŠ‚๐’Ÿ0๎€ธ(=๐’Ÿ(๐ป),iii)e๐‘–๐‘ก๐ด๐œŽ๐’Ÿ๎€ท๐ป0๎€ธ=e๐‘–๐‘ก๐ด๐œŽ๎€ท๐ป๐’Ÿ(๐ป)โŠ‚๐’Ÿ0๎€ธ=๐’Ÿ(๐ป).(3.59)

Proof. We only prove (i), since (ii) and (iii) can be proved similarly. By (3.56) we have, for ๐œ‘โˆˆ๐”‡, eโˆ’๐‘–๐‘ก๐ด๐ป0e๐‘–๐‘ก๐ด๎‚€๐ป๐œ‘=0(1)+๐ป0(3)+dฮ“๎€ท๐‘ค(2)โˆ˜๐œ™๐‘ก๎€ธ๎‚๐œ‘.(3.60) It follows from (3.50) and (3.60) that โ€–โ€–๐ป0e๐‘–๐‘ก๐ด๐œ‘โ€–โ€–โ‰คeฮ“|๐‘ก|โ€–โ€–๐ป0๐œ‘โ€–โ€–.(3.61) This yields (i) because ๐”‡ is a core for ๐ป0. Moreover we get โ€–โ€–๐ป0e๐‘–๐‘ก๐ด๎€ท๐ป0๎€ธ+1โˆ’1โ€–โ€–โ‰คeฮ“|๐‘ก|.(3.62) In view of ๐”‡(๐ป0)=๐”‡(๐ป), the operators ๐ป0(๐ป+๐‘–)โˆ’1 and ๐ป(๐ป0+๐‘–)โˆ’1 are bounded, and there exists a constant ๐ถ>0 such that โ€–โ€–๐ปe๐‘–๐‘ก๐ด(๐ป+๐‘–)โˆ’1โ€–โ€–โ‰ค๐ถeฮ“|๐‘ก|.(3.63) Similarly, we also get โ€–โ€–๐ป0e๐‘–๐‘ก๐ด๐œŽ๎€ท๐ป0๎€ธ+1โˆ’1โ€–โ€–โ‰คeฮ“|๐‘ก|,โ€–โ€–๐ป0e๐‘–๐‘ก๐ด๐œŽ๎€ท๐ป0๎€ธ+1โˆ’1โ€–โ€–โ‰คeฮ“|๐‘ก|,โ€–โ€–๐ปe๐‘–๐‘ก๐ด๐œŽ(๐ป+๐‘–)โˆ’1โ€–โ€–โ‰ค๐ถeฮ“|๐‘ก|,โ€–โ€–๐ปe๐‘–๐‘ก๐ด๐œŽ(๐ป+๐‘–)โˆ’1โ€–โ€–โ‰ค๐ถeฮ“|๐‘ก|.(3.64)

Let ๐ป๐ผ(๐บ) be the interaction associated with the kernels ๐บ=(๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ)๐›ผ=1,2;โ„“=1,2,3;๐œ–โ‰ ๐œ–โ€ฒ=ยฑ, where the kernels (๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ) satisfy Hypothesis 2.1.

We set ๎‚€๐‘‰(๐‘ก)๐บ=๐‘‰(๐‘ก)๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚๐›ผ=1,2;โ„“=1,2,3;๐œ–โ‰ ๐œ–โ€ฒ=ยฑ.(3.65) We have for ๐œ‘โˆˆ๐”‡ (see [11, Lemmaโ€‰โ€‰2.7]), eโˆ’๐‘–๐ด๐‘ก๐ป๐ผ(๐บ)e๐‘–๐ด๐‘ก๐œ‘=๐ป๐ผ๎€ทeโˆ’๐‘–๐‘Ž๐‘ก๐บ๎€ธ๐œ‘,eโˆ’๐‘–๐ด๐œŽ๐‘ก๐ป๐ผ(๐บ)e๐‘–๐ด๐œŽ๐‘ก๐œ‘=๐ป๐ผ๎€ทeโˆ’๐‘–๐‘Ž๐œŽ๐‘ก๐บ๎€ธ๐œ‘,eโˆ’๐‘–๐ด๐œŽ๐‘ก๐ป๐ผ(๐บ)e๐‘–๐ด๐œŽ๐‘ก๐œ‘=๐ป๐ผ๎€ทeโˆ’๐‘–๐‘Ž๐œŽ๐‘ก๐บ๎€ธ๐œ‘.(3.66)

According to [5, 6], in order to prove Theorem 3.4 we must prove that ๐ป is locally of class ๐ถ2(๐ด๐œŽ), ๐ถ2(๐ด๐œŽ), and ๐ถ2(๐ด) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2) and that ๐ด and ๐ด๐œŽ are locally strictly conjugate to ๐ป in (๐ธ,๐‘š1โˆ’๐›ฟ/2).

Recall that ๐ป is locally of class ๐ถ2(๐ด) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2) if, for any ๐œ‘โˆˆ๐ถโˆž0((โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2)), ๐œ‘(๐ป) is of class ๐ถ2(๐ด); that is, ๐‘กโ†’eโˆ’๐‘–๐ด๐‘ก๐œ‘(๐ป)e๐‘–๐‘ก๐ด๐œ“ is twice continuously differentiable for all ๐œ‘โˆˆ๐ถโˆž0((โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2)) and all ๐œ“โˆˆ๐”‰.

Thus, one of our main results is the following one.

Theorem 3.7. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii). (a)๐ป is locally of class ๐ถ2(๐ด), ๐ถ2(๐ด๐œŽ), and ๐ถ2(๐ด๐œŽ) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2). (b)๐ป๐œŽ is locally of class ๐ถ2(๐ด๐œŽ) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2).

It follows from Theorem 3.7 that [๐ป,๐‘–๐ด], [๐ป,๐‘–๐ด๐œŽ], [๐ป,๐‘–๐ด๐œŽ], and [๐ป๐œŽ,๐‘–๐ด๐œŽ] are defined as sesquilinear forms on โ‹ƒ๐พ๐ธ๐พ(๐ป)๐”‰, where the union is taken over all the compact subsets ๐พ of (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2).

Furthermore, by Proposition 3.6, Theorem 3.7 and [4, Lemmaโ€‰โ€‰29], we get for all ๐œ‘โˆˆ๐ถโˆž0((๐ธ,๐‘š1โˆ’๐›ฟ/2)) and all ๐œ“โˆˆ๐”‰, []๐œ‘(๐ป)๐ป,๐‘–๐ด๐œ‘(๐ป)๐œ“=lim๐‘กโ†’0๎‚ธ๐œ‘(๐ป)๐ป,e๐‘–๐‘ก๐ดโˆ’1๐‘ก๎‚น๎€บ๐œ‘(๐ป)๐œ“,๐œ‘(๐ป)๐ป,๐‘–๐ด๐œŽ๎€ป๐œ‘(๐ป)๐œ“=lim๐‘กโ†’0๎‚ธ๐œ‘(๐ป)๐ป,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น[๐œ‘(๐ป)๐œ“,๐œ‘(๐ป)๐ป,๐‘–๐ด๐œŽ]๐œ‘(๐ป)๐œ“=lim๐‘กโ†’0๎‚ธ๐œ‘(๐ป)๐ป,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ‘(๐ป)๐œ“,๐œ‘(๐ป๐œŽ)[๐ป๐œŽ,๐‘–๐ด๐œŽ]๐œ‘(๐ป๐œŽ)๐œ“=lim๐‘กโ†’0๐œ‘(๐ป๐œŽ)๎‚ธ๐ป๐œŽ,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ‘(๐ป๐œŽ)๐œ“.(3.67)

The following proposition allows us to compute [๐ป,๐‘–๐ด], [๐ป,๐‘–๐ด๐œŽ], [๐ป,๐‘–๐ด๐œŽ], and [๐ป๐œŽ,๐‘–๐ด๐œŽ] as sesquilinear forms. By Hypotheses 2.1 and 3.1(iii.a), the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(๐œ‰1,โ‹…,๐œ‰3) belong to the domains of ๐‘Ž, ๐‘Ž๐œŽ, and ๐‘Ž๐œŽ.

Proposition 3.8. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1(iii.a). Then (a)for all ๐œ“โˆˆ๐’Ÿ(๐ป) one has (i)lim๐‘กโ†’0[๐ป,(e๐‘–๐‘ก๐ดโˆ’1)/๐‘ก]๐œ“=(dฮ“(๐‘ค(2))+๐‘”๐ป๐ผ(โˆ’๐‘–๐‘Ž๐บ))๐œ“, (ii)lim๐‘กโ†’0[๐ป,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก]๐œ“=(dฮ“((๐œ‚๐œŽ)2๐‘ค(2))+๐‘”๐ป๐ผ(โˆ’๐‘–๐‘Ž๐œŽ๐บ))๐œ“, (iii)lim๐‘กโ†’0[๐ป,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก]๐œ“=(dฮ“((๐œ‚๐œŽ)2๐‘ค(2))+๐‘”๐ป๐ผ(โˆ’๐‘–๐‘Ž๐œŽ๐บ))๐œ“, (iv)lim๐‘กโ†’0[๐ป๐œŽ,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก]๐œ“=(dฮ“((๐œ‚๐œŽ)2๐‘ค(2))+๐‘”๐ป๐ผ(โˆ’๐‘–๐‘Ž๐œŽ(๎‚๐œ’๐œŽ(๐‘2)๐บ)))๐œ“; (b)and(i)sup0<|๐‘ก|โ‰ค1โ€–[๐ป,(e๐‘–๐‘ก๐ดโˆ’1)/๐‘ก](๐ป+๐‘–)โˆ’1โ€–<โˆž, (ii)sup0<|๐‘ก|โ‰ค1โ€–[๐ป,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก](๐ป+๐‘–)โˆ’1โ€–<โˆž, (iii)sup0<|๐‘ก|โ‰ค1โ€–[๐ป,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก](๐ป+๐‘–)โˆ’1โ€–<โˆž, (iv)sup0<|๐‘ก|โ‰ค1โ€–[๐ป๐œŽ,(e๐‘–๐‘ก๐ด๐œŽโˆ’1)/๐‘ก](๐ป+๐‘–)โˆ’1โ€–<โˆž.

Proof. Part (b) follows from part (a) by the uniform boundedness principle. For part (a), we only prove (a)(i), since other statements can be proved similarly.
By (3.50), we obtain 1||๐‘ค|๐‘ก|โ„“(2)๎€ท๐œ™๐‘ก๎€ท๐‘2๎€ธ๎€ธโˆ’๐‘คโ„“(2)๎€ท๐‘2๎€ธ||โ‰ค1๎€ท|๐‘ก|eฮ“|๐‘ก|๎€ธ๐‘คโˆ’1โ„“(2)๎€ท๐‘2๎€ธ(3.68) for โ„“=1,2,3.
By (3.56)โ€“(3.58) and Lebesgue's Theorem we then get for all ๐œ“โˆˆ๐’Ÿ(๐ป0)lim๐‘กโ†’0๎‚ธ๐ป0,e๐‘–๐‘ก๐ดโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐ป0e๐‘–๐‘ก๐ดโˆ’๐ป0๎€ป๐œ“=dฮ“๎€ท๐‘ค(2)๎€ธ๐œ“,lim๐‘กโ†’0๎‚ธ๐ป0,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐œŽ๐ป0e๐‘–๐‘ก๐ด๐œŽโˆ’๐ป0๎€ป๐œ“=dฮ“๎€ท(๐œ‚๐œŽ)2๐‘ค(2)๎€ธ๐œ“,lim๐‘กโ†’0๎‚ธ๐ป0,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐œŽ๐ป0e๐‘–๐‘ก๐ด๐œŽโˆ’๐ป0๎€ป๐œ“=dฮ“๎‚€๎€ท๐œ‚๐œŽ๎€ธ2๐‘ค(2)๎‚๐œ“.(3.69) By (3.66), we obtain, for all ๐œ“โˆˆ๐’Ÿ(๐ป), lim๐‘กโ†’0๎‚ธ๐ป๐ผ(๐บ),e๐‘–๐‘ก๐ดโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐ป๐ผ(๐บ)e๐‘–๐‘ก๐ดโˆ’๐ป๐ผ๎€ป(๐บ)๐œ“=๐ป๐ผ(โˆ’๐‘–(๐‘Ž๐บ))๐œ“,lim๐‘กโ†’0๎‚ธ๐ป๐ผ(๐บ),e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐œŽ๐ป๐ผ(๐บ)e๐‘–๐‘ก๐ด๐œŽโˆ’๐ป๐ผ๎€ป(๐บ)๐œ“=๐ป๐ผ(โˆ’๐‘–(๐‘Ž๐œŽ๐บ))๐œ“,lim๐‘กโ†’0๎‚ธ๐ป๐ผ(๐บ),e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐œŽ๐ป๐ผ(๐บ)e๐‘–๐‘ก๐ด๐œŽโˆ’๐ป๐ผ๎€ป(๐บ)๐œ“=๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๐บ๎€ธ๎€ธ๐œ“,lim๐‘กโ†’0๎‚ธ๐ป๐ผ๎€ท๎‚๐œ’๐œŽ๎€ท๐‘2๎€ธ๐บ๎€ธ,e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก๎‚น๐œ“=lim๐‘กโ†’01๐‘ก๎€บeโˆ’๐‘–๐‘ก๐ด๐œŽ๐ป๐ผ๎€ท๎‚๐œ’๐œŽ๎€ท๐‘2๎€ธ๐บ๎€ธe๐‘–๐‘ก๐ด๐œŽโˆ’๐ป๐ผ๎€ท๎‚๐œ’๐œŽ๎€ท๐‘2๎€ธ๐บ๐œ“๎€ธ๎€ป=๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๎€ท๎‚๐œ’๐œŽ๎€ท๐‘2๎€ธ๐บ๎€ธ๎€ธ๎€ธ๐œ“.(3.70) This concludes the proof of Proposition 3.8.

Combining (3.67) with Proposition 3.8, we finally get for every ๐œ‘โˆˆ๐ถโˆž0((โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2)) and every ๐œ“โˆˆ๐”‰[]๎€บ๐œ‘(๐ป)๐ป,๐‘–๐ด๐œ‘(๐ป)๐œ“=๐œ‘(๐ป)dฮ“๎€ท๐‘ค(2)๎€ธ+๐‘”๐ป๐ผ๎€ป(โˆ’๐‘–(๐‘Ž๐บ))๐œ‘(๐ป)๐œ“,(3.71)[๐œ‘(๐ป)๐ป,๐‘–๐ด๐œŽ]๎€บ๐œ‘(๐ป)๐œ“=๐œ‘(๐ป)dฮ“๎€ท(๐œ‚๐œŽ)2๐‘ค(2)๎€ธ+๐‘”๐ป๐ผ(โˆ’๐‘–(๐‘Ž๐œŽ๎€ป๐บ))๐œ‘(๐ป)๐œ“,(3.72)๎€บ๐œ‘(๐ป)๐ป,๐‘–๐ด๐œŽ๎€ป๎‚ƒ๐œ‘(๐ป)๐œ“=๐œ‘(๐ป)dฮ“๎‚€๎€ท๐œ‚๐œŽ๎€ธ2๐‘ค(2)๎‚+๐‘”๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๐บ๎‚„๎€ธ๎€ธ๐œ‘(๐ป)๐œ“,(3.73)๐œ‘(๐ป๐œŽ)[๐ป๐œŽ,๐‘–๐ด๐œŽ]๐œ‘(๐ป๐œŽ)๐œ“=๐œ‘(๐ป๐œŽ)๎€บdฮ“๎€ท(๐œ‚๐œŽ)2๐‘ค(2)๎€ธ+๐‘”๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๎€ท๎‚๐œ’๐œŽ๐บ๎€ธ๎€ธ๎€ธ๎€ป๐œ‘(๐ป๐œŽ)๐œ“.(3.74)

We now introduce the Mourre inequality.

Let ๐‘ be the smallest integer such that ๐‘๐›พโ‰ฅ1.(3.75)

We have, for ๐‘”โ‰ค๐‘”๐›ฟ(1), 1๐›พ<๐›พ+๐‘๎ƒฉ๎‚๐ท1โˆ’3๐‘”๐›พ๎ƒช๎‚๐ทโˆ’๐›พ<1โˆ’3๐‘”๐›พ,๐›พ๐‘1โ‰ค๐›พโˆ’๐‘๎ƒฉ๎‚๐ท1โˆ’3๐‘”๐›พ๎ƒชโˆ’๐›พ<๐›พ.(3.76) Let ๐œ–๐›พ=1๎ƒฉ2๐‘1โˆ’3๐‘”๐›ฟ(1)๎‚๐ท๐›พ๎ƒช.โˆ’๐›พ(3.77) We choose ๐‘“โˆˆ๐ถโˆž0(โ„) such that 1โ‰ฅ๐‘“โ‰ฅ0 and โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ1๐‘“(๐œ†)=if๎‚ƒ๎€ท๐œ†โˆˆ๐›พโˆ’๐œ–๐›พ๎€ธ2,๐›พ+๐œ–๐›พ๎‚„,0if1๐œ†>๐›พ+๐‘๎ƒฉ1โˆ’3๐‘”๐›ฟ(1)๎‚๐ท๐›พ๎ƒชโˆ’๐›พ=๐›พ+2๐œ–๐›พ,0if๎ƒฉ1๐œ†<๐›พโˆ’๐‘๎ƒฉ1โˆ’3๐‘”๐›ฟ(1)๎‚๐ท๐›พโˆ’๐›พ๎ƒช๎ƒช2=๎€ท๐›พโˆ’2๐œ–๐›พ๎€ธ2.(3.78) Note that ๐›พ+2๐œ–๐›พ๎‚<1โˆ’3๐‘”๐ท/๐›พ for ๐‘”โ‰ค๐‘”๐›ฟ(1) and ๐›พโˆ’๐œ–๐›พ>๐›พ/๐‘.

We set, for ๐‘›โ‰ฅ1, f๐‘›๎‚ต๐œ†(๐œ†)=๐‘“๐œŽ๐‘›๎‚ถ.(3.79)

Let ๐ป๐‘›=๐ป๐œŽ๐‘›,๐ธ๐‘›๎€ท๐ป=inf๐œŽ๐‘›๎€ธ,๐ป(2)0๐‘›=๐ป(2)0๐œŽ๐‘›.(3.80) Let ๐‘ƒ๐‘› denote the ground state projection of ๐ป๐‘›. It follows from Proposition 3.5 that, for ๐‘›โ‰ฅ1 and ๐‘”โ‰คฬƒ๐‘”๐›ฟโ‰ค๐‘”๐›ฟ(1), ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ=๐‘ƒ๐‘›โŠ—๐‘“๐‘›๎‚€๐ป(2)0,๐‘›๎‚.(3.81) Note that ๐ธ๐‘›=๐ธ๐‘›=inf๐œŽ(๐ป๐‘›).(3.82) Set ๐‘Ž๐‘›=๐‘Ž๐œŽ๐‘›,๐‘Ž๐‘›=๐‘Ž๐œŽ๐‘›,๐ด๐‘›=๐ด๐œŽ๐‘›,๐ด๐‘›=๐ด๐œŽ๐‘›,๐”‰๐‘›=๐”‰๐œŽ๐‘›,๐”‰๐‘›=๐”‰๐œŽ๐‘›.(3.83) We have ๐”‰โ‰ƒ๐”‰๐‘›โŠ—๐”‰๐‘›,๐ด=๐ด๐‘›+๐ด๐‘›.(3.84) We further note that ๐‘Ž๐‘›๎‚๐œ’๐œŽ๐‘›๎€ท๐‘2๎€ธ=๐‘Ž๐‘›.(3.85) By (3.72), (3.74), and (3.85), we obtain ๎€บ๐ป,๐‘–๐ด๐‘›๎€ป=๎€บ๐ป๐‘›,๐‘–๐ด๐‘›๎€ปโŠ—1(3.86) as sesquilinear forms with respect to ๐”‰=๐”‰๐‘›โŠ—๐”‰๐‘›.

Furthermore, it follows from the virial theorem (see [6, Propositionโ€‰โ€‰3.2] and Proposition 6.1) that ๐‘ƒ๐‘›๎€บ๐ป๐‘›,i๐ด๐‘›๎€ป๐‘ƒ๐‘›=0.(3.87) By (3.81) and (3.87) we then get, for ๐‘”โ‰คฬƒ๐‘”๐›ฟโ‰ค๐‘”๐›ฟ(1), ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ๎€บ๐ป,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ=0.(3.88)

We then have the following.

Proposition 3.9. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1. Then there exists ๎‚๐ถ๐›ฟ>0 and ฬƒ๐‘”๐›ฟ(1)>0 such that ฬƒ๐‘”๐›ฟ(1)โ‰คฬƒ๐‘”๐›ฟ and ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ๎€บ๐ป,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ‰ฅ๎‚๐ถ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2(3.89) for ๐‘›โ‰ฅ1 and ๐‘”โ‰คฬƒ๐‘”๐›ฟ(1).

Let ๐ธฮ”(๐ปโˆ’๐ธ) be the spectral projection for the operator ๐ปโˆ’๐ธ associated with the interval ฮ”, and let ฮ”๐‘›=๎‚ƒ๎€ท๐›พโˆ’๐œ–๐›พ๎€ธ2๐œŽ๐‘›,๎€ท๐›พ+๐œ–๐›พ๎€ธ๐œŽ๐‘›๎‚„,๐‘›โ‰ฅ1.(3.90) Note that ๎€บ๐œŽ๐‘›+2,๐œŽ๐‘›+1๎€ปโŠ‚๎‚€๎€ท๐›พโˆ’๐œ–๐›พ๎€ธ2๐œŽ๐‘›,๎€ท๐›พ+๐œ–๐›พ๎€ธ๐œŽ๐‘›๎‚,๐‘›โ‰ฅ1.(3.91)

Theorem 3.10. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1. Then there exists ๐ถ๐›ฟ>0 and ฬƒ๐‘”๐›ฟ(2)>0 such that ฬƒ๐‘”๐›ฟ(2)โ‰คฬƒ๐‘”๐›ฟ(1) and ๐ธฮ”๐‘›[]๐ธ(๐ปโˆ’๐ธ)๐ป,๐‘–๐ดฮ”๐‘›(๐ปโˆ’๐ธ)โ‰ฅ๐ถ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐ธฮ”๐‘›(๐ปโˆ’๐ธ)(3.92) for ๐‘›โ‰ฅ1 and ๐‘”โ‰คฬƒ๐‘”๐›ฟ(2).

4. Existence of a Ground State and Location of the Absolutely Continuous Spectrum

We now prove Theorem 3.3. The scheme of the proof is quite well known (see [9, 31]). It follows from Proposition 3.5 that ๐ป๐‘› has a unique ground state, denoted by ๐œ™๐‘›, in ๐”‰๐‘›: ๐ป๐‘›๐œ™๐‘›=๐ธ๐‘›๐œ™๐‘›,๐œ™๐‘›โˆˆ๐’Ÿ(๐ป๐‘›โ€–๐œ™),๐‘›โ€–=1,๐‘›โ‰ฅ1.(4.1) Therefore ๐ป๐‘› has an unique normalized ground state in ๐”‰, given by ๎‚๐œ™๐‘›=๐œ™๐‘›โŠ—ฮฉ๐‘›, where ฮฉ๐‘› is the vacuum state in ๐”‰๐‘›: ๐ป๐‘›๎‚๐œ™๐‘›=๐ธ๐‘›๎‚๐œ™๐‘›,๎‚๐œ™๐‘›๎€ท๐ปโˆˆ๐’Ÿ๐‘›๎€ธ,โ€–โ€–๎‚๐œ™๐‘›โ€–โ€–=1,๐‘›โ‰ฅ1.(4.2) Since โ€–๎‚๐œ™๐‘›โ€–=1, there exists a subsequence (๐‘›๐‘˜)๐‘˜โ‰ฅ1, converging to โˆž such that (๎‚๐œ™๐‘›๐‘˜)๐‘˜โ‰ฅ1 converges weakly to a state ๎‚๐œ™โˆˆ๐”‰. We have to prove that ๎‚๐œ™โ‰ 0. By adapting the proof of Theorem 4.1 in [22] (see also [20]), the key point is to estimate โ€–๐‘โ„“,๐œ–(๐œ‰2)๎‚ฮฆ๐‘›โ€–๐”‰ in order to show that 3๎“โ„“=1๎“๐œ–๎€œโ€–โ€–๐‘โ„“,๐œ–(๐œ‰2)๎‚๐œ™๐‘›โ€–โ€–2d๐œ‰2๎€ท๐‘”=๐’ช2๎€ธ,(4.3) uniformly with respect to ๐‘›.

The estimate (4.3) is a consequence of the so-called โ€œpull-throughโ€™โ€™ formula as it follows.

Let ๐ป๐ผ,๐‘› denote the interaction ๐ป๐ผ associated with the kernels 1{|๐‘2|โ‰ฅ๐œŽ๐‘›}(๐‘2)๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ. We thus have ๐ป0๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›=๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐ป0๎‚๐œ™๐‘›โˆ’๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›,๐‘”๐ป๐ผ,๐‘›๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›=๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘”๐ป๐ผ,๐‘›๎‚๐œ™๐‘›+๐‘”๐‘‰โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›(4.4) with ๐‘‰โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๎€œ๐บ=๐‘”(1)โ„“,๐œ–โ€ฒ๐œ–๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰1๎€ธ๐‘Ž๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰3๎€œ๐บ+๐‘”(2)โ„“,๐œ–โ€ฒ๐œ–๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰1๎€ธ๐‘Žโˆ—๐œ–๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰3.(4.5) This yields ๎‚€๐ป๐‘›โˆ’๐ธ๐‘›+๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๎‚๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›=๐‘‰โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰2๎€ธ๎‚๐œ™๐‘›.(4.6) By adapting the proof of Propositions 2.4 and 2.5 we easily get โ€–โ€–๐‘‰โ„“,๐œ–,๐œ–โ€ฒ๐œ“โ€–โ€–๐”‰โ‰ค๐‘”๐‘š๐‘Š1/2๎ƒฉ๎“๐›ผ=1,2โ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,๐œ‰2โ€–โ€–,โ‹…)๐ฟ2(ฮฃ1ร—ฮฃ2)๎ƒชโ€–โ€–๐ป01/2๐œ“โ€–โ€–โ€–โ€–๐บ+๐‘”(2)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,๐œ‰2โ€–โ€–,โ‹…)๐ฟ2(ฮฃ1ร—ฮฃ2)โ€–๐œ“โ€–,(4.7) where ๐œ“โˆˆ๐’Ÿ(๐ป0).

Let us estimate โ€–๐ป0๎‚๐œ™๐‘›โ€–. By (2.53), (2.54), (3.26), and (3.28) we have ๐‘”โ€–โ€–๐ป๐ผ,๐‘›๎‚๐œ™๐‘›โ€–โ€–๎‚€๐ถโ‰ค๐‘”๐พ(๐บ)๐›ฝ๐œ‚โ€–โ€–๐ป0๎‚๐œ™๐‘›โ€–โ€–+๐ต๐›ฝ๐œ‚๎‚,โ€–โ€–๐ป0๎‚๐œ™๐‘›โ€–โ€–โ‰ค||๐ธ๐‘›||โ€–โ€–๐ป+๐‘”๐ผ,๐‘›๎‚๐œ™๐‘›โ€–โ€–.(4.8) Therefore โ€–โ€–๐ป0๎‚๐œ™๐‘›โ€–โ€–โ‰ค||๐ธ๐‘›||1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚+๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚.(4.9) By (3.82), (A.11), and (4.9), there exists ๐ถ>0 such that โ€–โ€–๐ป0๎‚๐œ™๐‘›โ€–โ€–โ‰ค๐ถ,(4.10) uniformly in ๐‘› and ๐‘”โ‰ค๐‘”1.

By (4.6), (4.7), and (4.10) we get โ€–โ€–๐‘โ„“,๐œ–๎‚๐œ™๐‘›โ€–โ€–โ‰ค๐‘”||๐‘2||๎ƒฉ๐ถ1/2๎ƒฉ2๎“๐›ผ=1โ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,๐œ‰2โ€–โ€–,โ‹…)๐ฟ2(ฮฃ1ร—ฮฃ2)๎ƒช+โ€–โ€–๐บ(2)โ„“,๐œ–,๐œ–โ€ฒ(โ‹…,๐œ‰2โ€–โ€–,โ‹…)๐ฟ2(ฮฃ1ร—ฮฃ2)๎ƒช.(4.11) By Hypothesis 3.1(i), there exists a constant ๐ถ(๐บ)>0 depending on the kernels ๐บ=(๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ)โ„“=1,2,3;๐›ผ=1,2;๐œ–โ‰ ๐œ–โ€ฒ=ยฑ and such that 3๎“โ„“=1๎“๐œ–๎€œโ€–โ€–๐‘โ„“,๐œ–(๐œ‰2)๎‚๐œ™๐‘›โ€–โ€–2d๐œ‰2โ‰ค๐ถ(๐บ)2๐‘”2.(4.12) The existence of a ground state ๎‚๐œ™ for ๐ป follows by choosing ๐‘” sufficiently small, that is, ๐‘”โ‰ค๐‘”2, as in [20, 22]. By adapting the method developed in [32] (see [32, Corollaryโ€‰โ€‰3.4]), one proves that the ground state of ๐ป is unique. We omit here the details.

Statements about ๐œŽ(๐ป) are consequences of the existence of a ground state and follows from the existence of asymptotic Fock representations for the CAR associated with the ๐‘โ™ฏโ„“,๐œ–(๐œ‰2)'s. For ๐‘“โˆˆ๐ฟ2(โ„3,โ„‚2), we define on ๐’Ÿ(๐ป0) the operators ๐‘โ™ฏ๐‘กโ„“,๐œ–(๐‘“)=e๐‘–๐‘ก๐ปeโˆ’๐‘–๐‘ก๐ป0๐‘โ™ฏโ„“,๐œ–(๐‘“)ei๐‘ก๐ป0eโˆ’๐‘–๐‘ก๐ป.(4.13) By mimicking the proof given in [21, 31] one proves, under the hypothesis of Theorem 3.3 and for ๐‘“โˆˆ๐ถโˆž0(โ„3,โ„‚2), that the strong limits of ๐‘โ™ฏ๐‘กโ„“,๐œ–(๐‘“) when ๐‘กโ†’ยฑโˆž exist for ๐œ“โˆˆ๐’Ÿ(๐ป0): lim๐‘กโ†’ยฑโˆž๐‘โ™ฏ๐‘กโ„“,๐œ–(๐‘“)๐œ“โˆถ=๐‘โ™ฏยฑโ„“,๐œ–(๐‘“)๐œ“.(4.14) The operators ๐‘โ™ฏยฑโ„“,๐œ–(๐‘“) satisfy the CAR and we have ๐‘ยฑโ„“,๐œ–๎‚(๐‘“)๐œ™=0,๐‘“โˆˆ๐ถโˆž0๎€ทโ„3,โ„‚2๎€ธ,(4.15) where ๎‚๐œ™ is the ground state of ๐ป.

It then follows from (4.14) and (4.15) that the absolutely continuous spectrum of ๐ป equals to [inf๐œŽ(๐ป),โˆž). We omit the details (see [21, 31]).

5. Proof of the Mourre Inequality

We first prove Proposition 3.9. In view of Proposition 3.8(a)(iii) and (3.73), we have, as sesquilinear forms, ๎€บ๐ป,๐‘–๐ด๐œŽ๎€ป=(1โˆ’๐‘”)dฮ“๎‚€๎€ท๐œ‚๐œŽ๎€ธ2๐‘ค(2)๎‚๎‚€+๐‘”dฮ“๎‚€๎€ท๐œ‚๐œŽ๎€ธ2๐‘ค(2)๎‚๎‚+๐‘”๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๐บ.๎€ธ๎€ธ(5.1) Let ๐”‰โ„“(1) (resp., ๐”‰โ„“(2)) be the Fock space for the massive leptons โ„“ (resp., the neutrinos and antineutrinos โ„“).

We have ๐”‰โ„“โ‰ƒ๐”‰โ„“(1)โŠ—๐”‰โ„“(2).(5.2)

Let ๐”‰(1)=๐”‰๐‘ŠโŠ—๎ƒฉ3๎ทโ„“=1๐”‰โ„“(1)๎ƒช,๐”‰(2)=3๎ทโ„“=1๐”‰โ„“(2).(5.3)

We have ๐”‰โ‰ƒ๐”‰(1)โŠ—๐”‰(2),(5.4)๐”‰(1) is the Fock space for the massive leptons and the bosons ๐‘Šยฑ, and ๐”‰(2) is the Fock space for the neutrinos and antineutrinos.

We have, as sesquilinear forms and with respect to (5.4), dฮ“๎‚€๎€ท๐œ‚๐œŽ๎€ธ2๐‘ค(2)๎‚+๐ป๐ผ๎€ท๎€ท๐‘Žโˆ’๐‘–๐œŽ๐บ=๎€ธ๎€ธ3๎“โ„“=1๎“๐œ–๎€œ๐œ‚๐œŽ๎€ท๐‘2๎€ธ2||๐‘2||๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2+3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œ||๐‘2||โŽ›โŽœโŽœโŽ11โŠ—๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ+๎“๐›ผ=1,2โ„ณ(๐›ผ)โˆ—โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||โŠ—12โŽžโŽŸโŽŸโŽ ร—โŽ›โŽœโŽœโŽ11โŠ—๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธ+๎“๐›ผ=1,2โ„ณ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||โŠ—12โŽžโŽŸโŽŸโŽ d๐œ‰2โˆ’3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒ๎€œโŽ›โŽœโŽœโŽ๎“๐›ผ=1,2โ„ณ(๐›ผ)โˆ—โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽ๎“๐›ผ=1,2โ„ณ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ d๐œ‰2,(5.5) where โ„ณ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ๎€œ๎ƒฉ๎“=๐‘–๐›ผ=1,2๎‚€๐‘Ž๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ๎‚๎ƒช๐‘โˆ—โ„“,๐œ–โ€ฒ๎€ท๐œ‰1๎€ธ๐‘Ž๐œ–โ€ฒ๎€ท๐œ‰3๎€ธd๐œ‰1d๐œ‰3,(5.6) and where 1๐‘— is the identity operator in ๐”‰(๐‘—).

By mimicking the proofs of Propositions 2.4 and 2.5, we get, for every ๐œ“โˆˆ๐”‡, 3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโŽ›โŽœโŽœโŽ๎€œโŽ›โŽœโŽœโŽ๎“๐œ“,๐›ผ=1,2โ„ณ(๐›ผ)โˆ—โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽ๎“๐›ผ=1,2โ„ณ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ ๐œ“d๐œ‰2โŽžโŽŸโŽŸโŽ =3๎“โ„“=1๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–โ€–โ€–๎€œ๎ƒฉ๎“๐›ผ=1,2โ„ณ๐›ผโ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12๎ƒช๐œ“d๐œ‰2โ€–โ€–โ€–โ€–2โ‰คโŽ›โŽœโŽœโŽœโŽ๎€œ|||โˆ‘๐›ผ=1,2๎‚€๐‘Ž๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2๐‘ค(3)๎€ท๐œ‰3๎€ธ||๐‘2||d๐œ‰1d๐œ‰2d๐œ‰3โŽžโŽŸโŽŸโŽŸโŽ โ€–โ€–โ€–๎‚€๐ป0(3)๎‚1/2๐œ“โ€–โ€–โ€–.(5.7) Noting that |(๐‘Ž๐œ‚๐œŽ)(๐‘2)|โ‰ค๐ถ uniformly with respect to ๐œŽ, it follows from Hypotheses 2.1 and 3.1 that there exists a constant ๐ถ(๐บ)>0 such that ๎€œ|||โˆ‘๐›ผ=1,2๎‚€๐‘Ž๐œ‚๐œŽ๎€ท๐‘2๎€ธ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ|||2๐‘ค(3)๎€ท๐œ‰3๎€ธ||๐‘2||d๐œ‰1d๐œ‰2d๐œ‰3โ‰ค๐ถ(๐บ)๐œŽ.(5.8) This yields โˆ’๎€œโŽ›โŽœโŽœโŽ๎“๐›ผ=1,2โ„ณ(๐›ผ)โˆ—โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ โŽ›โŽœโŽœโŽ๎“๐›ผ=1,2โ„ณ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๐œŽ๎€ท๐œ‰2๎€ธ||๐‘2||1/2โŠ—12โŽžโŽŸโŽŸโŽ d๐œ‰2โ‰ฅโˆ’๐ถ(๐บ)๐œŽ.(5.9)

Combining (5.1), (5.5) with (5.9), we obtain ๎€บ๐ป,๐‘–๐ด๐‘›๎€ปโ‰ฅ(1โˆ’๐‘”)dฮ“๎‚€๎€ท๐œ‚๐œŽ๐‘›๎€ธ2๐‘ค(2)๎‚โˆ’๐‘”๐ถ(๐บ)๐œŽ๐‘›.(5.10)

We have dฮ“๎‚€๎€ท๐œ‚๐œŽ๐‘›๎€ธ2๐‘ค(2)๎‚โ‰ฅ๐ป(2)0๐‘›.(5.11)

By (3.76), (3.81), and (5.11) we get ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธdฮ“๎€ท๐œ‚๐œŽ๐‘›2๐‘ค(2)๎€ธ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ‰ฅ๐‘ƒ๐‘›โŠ—๐‘“๐‘›๎‚€๐ป(2)0๐‘›๎‚๐ป(2)0๐‘›๐‘“๐‘›๎‚€๐ป(2)0๐‘›๎‚โ‰ฅ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2(5.12) for ๐‘”โ‰ค๐‘”๐›ฟ(1).

This, together with (5.10), yields for ๐‘”โ‰ค๐‘”๐›ฟ(1)๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ๎€บ๐ป,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ‰ฅ๎‚€1โˆ’๐‘”๐›ฟ(1)๎‚๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2โˆ’๐‘”๐ถ(๐บ)๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2.(5.13) Setting ๐‘”๐›ฟ(2)๎ƒฉ๐‘”=inf๐›ฟ(1),1โˆ’๐‘”๐›ฟ(1)๐›พ2๐ถ(๐บ)2๐‘2๎ƒช,(5.14) we get ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ๎€บH,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ‰ฅ1โˆ’๐‘”๐›ฟ(1)2๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2(5.15) for ๐‘”โ‰ค๐‘”๐›ฟ(2).

Proposition 3.9 is proved by setting ฬƒ๐‘”๐›ฟ(1)=๐‘”๐›ฟ(2) and ๎‚๐ถ๐›ฟ=(1โˆ’๐‘”๐›ฟ(1))/2.

The proof of Theorem 3.10 is the consequence of the following two lemmas.

Lemma 5.1. Assume that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a constant ๐ท>0 such that ||๐ธโˆ’๐ธ๐‘›||โ‰ค๐‘”๐ท๐œŽ๐‘›2(5.16) for ๐‘›โ‰ฅ1 and ๐‘”โ‰ค๐‘”(2).

Proof. Let ๐œ™ (resp., ๎‚๐œ™๐‘›) be the unique normalized ground state of ๐ป (resp., ๐ป๐‘›). We have ๐ธโˆ’๐ธ๐‘›โ‰ค๎‚€๎‚๐œ™๐‘›,๎€ท๐ปโˆ’๐ป๐‘›๎€ธ๎‚๐œ™๐‘›๎‚,๐ธ๐‘›๎€ท๎€ท๐ปโˆ’๐ธโ‰ค๐œ™,๐‘›๎€ธ๐œ™๎€ธโˆ’๐ป(5.17) with ๐ปโˆ’๐ป๐‘›=๐‘”๐ป๐ผ๎€ท๐œ’๐œŽ๐‘›๎€ท๐‘2๎€ธ๐บ๎€ธ.(5.18) Combining (2.53) and (2.54) with (3.26)โ€“(3.28) and (5.18), we get โ€–โ€–๎€ท๐ปโˆ’๐ป๐‘›๎€ธ๎‚๐œ™๐‘›โ€–โ€–๎€ท๐œ’โ‰ค๐‘”๐พ๐œŽ๐‘›๎€ท๐‘2๎€ธ๐บ๎€ธ๎‚€๐ถ๐›ฝ๐œ‚โ€–โ€–๐ป0๎‚๐œ™๐‘›โ€–โ€–+๐ต๐›ฝ๐œ‚๎‚,โ€–โ€–๎€ท๐ปโˆ’๐ป๐‘›๎€ธ๐œ™โ€–โ€–๎€ท๐œ’โ‰ค๐‘”๐พ๐œŽ๐‘›๎€ท๐‘2๎€ธ๐บ๐ถ๎€ธ๎€ท๐›ฝ๐œ‚โ€–โ€–๐ป0๐œ™โ€–โ€–+๐ต๐›ฝ๐œ‚๎€ธ.(5.19) It follows from Hypothesis 3.1(ii), (4.10), and (5.19) that there exists a constant ๐ท>0 such that ๎‚€โ€–โ€–๎€ทmax๐ปโˆ’๐ป๐‘›๎€ธ๎‚๐œ™๐‘›โ€–โ€–,โ€–โ€–๎€ท๐ปโˆ’๐ป๐‘›๎€ธ๐œ™โ€–โ€–๎‚โ‰ค๐‘”๐ท๐œŽ๐‘›2(5.20) for ๐‘›โ‰ฅ1 and ๐‘”โ‰ค๐‘”(2).
By (5.17), this proves Lemma 5.1.

Lemma 5.2. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1(ii). Then there exists a constant ๐ถ>0 such that โ€–โ€–๐‘“๐‘›(๐ปโˆ’๐ธ)โˆ’๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ€–โ€–โ‰ค๐‘”๐ถ๐œŽ๐‘›(5.21) for ๐‘›โ‰ฅ1 and ๐‘”โ‰ค๐‘”(2).

Proof. Let ๎‚๐‘“(โ‹…) be an almost analytic extension of ๐‘“(โ‹…) given by (3.78) satisfying ||๐œ•๐‘ง๎‚||๐‘“(๐‘ฅ+๐‘–๐‘ฆ)โ‰ค๐ถ๐‘ฆ2.(5.22) Note that ๎‚๐‘“(๐‘ฅ+๐‘–๐‘ฆ)โˆˆ๐ถโˆž0(โ„2). We thus have ๎€œ๐‘“(๐‘ )=d๎‚๐‘“(๐‘ง),๐‘งโˆ’๐‘ d๎‚1๐‘“(๐‘ง)=โˆ’๐œ‹๐œ•๎‚๐‘“๐œ•๐‘งd๐‘ฅd๐‘ฆ.(5.23) Using the functional calculus based on this representation of ๐‘“(๐‘ ), we get ๐‘“๐‘›(๐ปโˆ’๐ธ)โˆ’๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ=๐œŽ๐‘›๎€œ1๐ปโˆ’๐ธโˆ’๐‘ง๐œŽ๐‘›๎€ท๐ปโˆ’๐ป๐‘›+๐ธ๐‘›๎€ธ1โˆ’๐ธ๐ป๐‘›โˆ’๐ธ๐‘›โˆ’๐‘ง๐œŽ๐‘›d๎‚๐‘“(๐‘ง).(5.24) Combining (2.53) and (2.54) with (3.26)โ€“(3.28) and Hypothesis 3.1(ii), we get, for every ๐œ“โˆˆ๐’Ÿ(๐ป0) and for ๐‘”โ‰ค๐‘”(2), ๐‘”โ€–โ€–๐ป๐ผ๎€ท๐œ’๐œŽ๐‘›๐บ๎€ธ๐œ“โ€–โ€–โ‰ค2๐‘”๐ถ๐œŽ๐‘›2๎€ท๐ถ๐พ(๐บ)๐›ฝ๐œ‚โ€–โ€–๎€ท๐ป0๎€ธ๐œ“โ€–โ€–+๎€ท๐ถ+1๐›ฝ๐œ‚+๐ต๐›ฝ๐œ‚๎€ธ๎€ธ.โ€–๐œ“โ€–(5.25) This yields ๐‘”โ€–โ€–๐ป๐ผ๎€ท๐œ’๐œŽ๐‘›๎€ท๐‘2๎€ธ๐บ๐ป๎€ธ๎€ท0๎€ธ+1โˆ’1โ€–โ€–โ‰ค๐‘”๐ถ1๐œŽ๐‘›2(5.26) for some constant ๐ถ1>0 and for ๐‘”โ‰ค๐‘”(2).
By mimicking the proof of (A.21) we show that there exists a constant ๐ถ2>0 such that โ€–โ€–๎€ท๐ป0๐ป+1๎€ธ๎€ท๐‘›โˆ’๐ธ๐‘›โˆ’๐‘ง๐œŽ๐‘›๎€ธโˆ’1โ€–โ€–โ‰ค๐ถ2๎‚ต11+||||๐œŽIm๐‘ง๐‘›๎‚ถ(5.27) or ๐‘”โ‰ค๐‘”(1).
Combining Lemma 5.1 and (5.24) with (5.25)โ€“(5.27) we obtain โ€–โ€–๐‘“๐‘›(๐ปโˆ’๐ธ)โˆ’๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ€–โ€–โ‰ค๐‘”๐ถ๐œŽ๐‘›๎€œ|||๎‚€๐œ•๎‚๐‘“/๐œ•๐‘ง๎‚|||(๐‘ฅ+๐‘–๐‘ฆ)๐‘ฆ2d๐‘ฅd๐‘ฆ(5.28) for some constant ๐ถ>0 and for ๐‘”โ‰ค๐‘”(2).
Using (5.22) and ๎‚๐‘“(๐‘ฅ+๐‘–๐‘ฆ)โˆˆ๐ถโˆž0(โ„2) one concludes the proof of Lemma 5.2.

We now prove Theorem 3.10.

Proof. It follows from Proposition 3.9 that ๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ[]๐‘“๐ป,๐‘–๐ด๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ=๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ๎€บ๐ป,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโ‰ฅ๎‚๐ถ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ2(5.29) for ๐‘›โ‰ฅ1 and ๐‘”โ‰คฬƒ๐‘”๐›ฟ(1).
This yields ๐‘“๐‘›๎€บ(๐ปโˆ’๐ธ)๐ป,๐‘–๐ด๐‘›๎€ป๐‘“๐‘›โ‰ฅ๎‚๐ถ(๐ปโˆ’๐ธ)๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›(๐ปโˆ’๐ธ)2โˆ’๐‘“๐‘›[]๎€ท๐‘“(๐ปโˆ’๐ธ)๐ป,๐‘–๐ด๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโˆ’๐‘“๐‘›๎€ธโˆ’๎€ท๐‘“(๐ปโˆ’๐ธ)๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโˆ’๐‘“๐‘›๎€ธ[]๐‘“(๐ปโˆ’๐ธ)๐ป,๐‘–๐ด๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธ+๎‚๐ถ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๎€ท๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโˆ’๐‘“๐‘›๎€ธ(๐ปโˆ’๐ธ)2+๎‚๐ถ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›(๎€ท๐‘“๐ปโˆ’๐ธ)๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโˆ’๐‘“๐‘›(๎€ธ+๎‚๐ถ๐ปโˆ’๐ธ)๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๎€ท๐‘“๐‘›๎€ท๐ป๐‘›โˆ’๐ธ๐‘›๎€ธโˆ’๐‘“๐‘›๎€ธ๐‘“(๐ปโˆ’๐ธ)๐‘›(๐ปโˆ’๐ธ).(5.30) Combining Proposition 3.8(i) and (5.23) with (5.26) and (5.27) we show that [๐ป,๐‘–๐ด]๐‘“๐‘›(๐ป๐‘›โˆ’๐ธ๐‘›) and ๐‘“๐‘›(๐ปโˆ’๐ธ)[๐ป,๐‘–๐ด] are bounded operators uniformly with respect to ๐‘›. This, together with Lemma 5.2, yields ๐‘“๐‘›[]๐‘“(๐ปโˆ’๐ธ)๐ป,๐‘–๐ด๐‘›๎‚๐ถ(๐ปโˆ’๐ธ)โ‰ฅ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐‘“๐‘›(๐ปโˆ’๐ธ)2โˆ’๎‚๐ถ๐‘”๐œŽ๐‘›(5.31) for some constant ๎‚๐ถ>0 and for ๐‘”โ‰คinf(๐‘”(2),ฬƒ๐‘”๐›ฟ(1)).
Multiplying both sides of (5.31) with ๐ธฮ”๐‘›(๐ปโˆ’๐ธ) we then get ๐ธฮ”๐‘›[]๐ธ(๐ปโˆ’๐ธ)๐ป,๐‘–๐ดฮ”๐‘›๎‚๐ถ(๐ปโˆ’๐ธ)โ‰ฅ๐›ฟ๐›พ2๐‘2๐œŽ๐‘›๐ธฮ”๐‘›๎‚(๐ปโˆ’๐ธ)โˆ’๐ถ๐‘”๐œŽ๐‘›๐ธฮ”๐‘›(๐ปโˆ’๐ธ).(5.32) Setting ฬƒ๐‘”๐›ฟ(2)๎ƒฉ๎‚๐ถ<inf๐›ฟ๎‚๐ถ๐›พ2๐‘2,๐‘”(2),ฬƒ๐‘”๐›ฟ(1)๎ƒช,(5.33) Theorem 3.10 is proved with ๐ถ๐›ฟ=๎‚๐ถ๐›ฟโˆ’๎‚๐ถ(๐‘2/๐›พ2)ฬƒ๐‘”๐›ฟ(2)>0.

6. Proof of Theorem 3.7

We set ๐ด๐‘ก=e๐‘–๐‘ก๐ดโˆ’1๐‘ก,ad๐ด๐‘ก๎€บ๐ดโ‹…=๐‘ก๎€ป,๐ด,โ‹…๐œŽ๐‘ก=e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก,๐ด๐œŽ๐‘ก=e๐‘–๐‘ก๐ด๐œŽโˆ’1๐‘ก.(6.1) The fact that ๐ป is of class ๐ถ1(๐ด), ๐ถ1(๐ด๐œŽ), and ๐ถ1(๐ด๐œŽ) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2) is the consequence of the following proposition.

Proposition 6.1. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1 and 3.1(iii.a). For every ๐œ‘โˆˆ๐ถโˆž0((โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2)) and ๐‘”โ‰ค๐‘”1, one then has sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐œ‘(๐ป),๐ด๐‘ก๎€ปโ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐œ‘(๐ป),๐ด๐œŽ๐‘ก๎€ปโ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐œ‘(๐ป),๐ด๐œŽ๐‘ก๎€ปโ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐œ‘(๐ป๐œŽ),๐ด๐œŽ๐‘ก๎€ปโ€–โ€–<โˆž.(6.2)

Proof. We use the representation ๎€œ๐œ‘(๐ป)=d๐œ™(๐‘ง)(๐‘งโˆ’๐ป)โˆ’1,(6.3) where ๐œ™(๐‘ง) is an almost analytic extension of ๐œ‘ with ||๐œ•๐‘ง||||๐‘ฆ||๐œ™(๐‘ฅ+๐‘–๐‘ฆ)โ‰ค๐ถ2,d1๐œ™(๐‘ง)=โˆ’๐œ‹๐œ•๐œ•๐‘ง๐œ™(๐‘ง)d๐‘ฅd๐‘ฆ.(6.4) Note that ๐œ™(๐‘ฅ+๐‘–๐‘ฆ)โˆˆ๐ถโˆž0(โ„2).
We get ad๐ด๐‘ก๎€œ๐œ‘(๐ป)=d๐œ™(๐‘ง)(๐‘งโˆ’๐ป)โˆ’1๎€บ๐ด๐‘ก๎€ป(,๐ป๐‘งโˆ’๐ป)โˆ’1.(6.5) This yields โ€–โ€–ad๐ด๐‘กโ€–โ€–๐œ‘(๐ป)โ‰คsup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก๎€ป(,๐ป๐‘–โˆ’๐ป)โˆ’1โ€–โ€–๎€œ||d||โ€–โ€–(๐œ™(๐‘ง)๐‘งโˆ’๐ป)โˆ’1โ€–โ€–โ€–โ€–(๐‘–โˆ’๐ป)(๐‘งโˆ’๐ป)โˆ’1โ€–โ€–.(6.6) It is easy to prove that ๎€œ||d||โ€–โ€–๐œ™(๐‘ง)(๐‘งโˆ’๐ป)โˆ’1โ€–โ€–โ€–โ€–(๐‘–โˆ’๐ป)(๐‘งโˆ’๐ป)โˆ’1โ€–โ€–๎€œ||โ‰ค๐ถd||๐œ™(๐‘ง)||||Im๐‘ง2<โˆž.(6.7)
By Proposition 3.8(b)(i) and (6.7) we finally get, for ๐‘”โ‰ค๐‘”1, sup0<|๐‘ก|โ‰ค1โ€–โ€–ad๐ด๐‘ก๐œ‘โ€–โ€–(๐ป)<โˆž.(6.8) In a similar way we obtain, for ๐‘”โ‰ค๐‘”1, sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก๎€ปโ€–โ€–,๐œ‘(๐ป)<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก๎€ปโ€–โ€–,๐œ‘(๐ป)<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๐œ‘(๐ป๐œŽ)๎€ปโ€–โ€–<โˆž.(6.9)

The proof of Theorem 3.7 is the consequence of the following proposition.

Proposition 6.2. Suppose that the kernels ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ satisfy Hypotheses 2.1, 3.1(i) and 3.1(iii). One then has, for ๐‘”โ‰ค๐‘”1, sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก(,๐ป๎€ป๎€ป๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป๐œŽ๎€ป๎€ป(๐ป๐œŽ+๐‘–)โˆ’1โ€–โ€–<โˆž.(6.10)

Proof. We have, for every ๐œ“โˆˆ๐’Ÿ(๐ป), ๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก1,๐ป๎€ป๎€ป๐œ“=๐‘ก2e2๐‘–๐‘ก๐ด๎€ทeโˆ’2๐‘–๐‘ก๐ด๐ปe2๐‘–๐‘ก๐ดโˆ’2eโˆ’๐‘–๐‘ก๐ด๐ปe๐‘–๐‘ก๐ด๎€ธ+๐ป๐œ“.(6.11) By (3.56) we get ๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป01๎€ป๎€ป๐œ“=๐‘ก2e2๐‘–๐‘ก๐ด๎€ทdฮ“๎€ท๐‘ค(2)โˆ˜๐œ™2๐‘กโˆ’2๐‘ค(2)โˆ˜๐œ™๐‘ก+๐‘ค(2)๎€ธ๎€ธ๐œ“,(6.12) where, for โ„“=1,2,3, ๎‚€๐‘คโ„“(2)โˆ˜๐œ™2๐‘ก๎‚๎€ท๐‘2๎€ธ๎‚€๐‘คโˆ’2โ„“(2)โˆ˜๐œ™๐‘ก๎‚๎€ท๐‘2๎€ธ+๐‘คโ„“(2)๎€ท๐‘2๎€ธ=||๐œ™2๐‘ก๎€ท๐‘2๎€ธ||||๐œ™โˆ’2๐‘ก๎€ท๐‘2๎€ธ||+||๐‘2||.(6.13) We further note that 1๐‘ก2||||๐œ™2๐‘ก๎€ท๐‘2๎€ธ||||๐œ™โˆ’2๐‘ก๎€ท๐‘2๎€ธ||+||๐‘2||||โ‰คsup|๐‘ |โ‰ค2|๐‘ก|||||๐œ•2๐œ•๐‘ 2||๐œ™๐‘ ๎€ท๐‘2๎€ธ||||||,๐œ•2๐œ•๐‘ 2||๐œ™๐‘ ๎€ท๐‘2๎€ธ||=||๐œ™๐‘ ๎€ท๐‘2๎€ธ||โ‰คeฮ“|๐‘ |||๐‘2||.(6.14) Combining (6.12) with (6.13) and (6.14) we get โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป0๐ป๎€ป๎€ป๎€ท0๎€ธ+1โˆ’1โ€–โ€–โ‰คe2ฮ“|๐‘ก|,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป0๐ป๎€ป๎€ป๎€ท0๎€ธ+1โˆ’1โ€–โ€–โ‰คe2ฮ“.(6.15) In a similar way we obtain sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป0๐ป๎€ป๎€ป๎€ท0๎€ธ+1โˆ’1โ€–โ€–โ‰ค๐ถe2ฮ“,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป0๐ป๎€ป๎€ป๎€ท0๎€ธ+1โˆ’1โ€–โ€–โ‰ค๐ถe2ฮ“.(6.16) Here ๐ถ is a positive constant.
Let us now prove that sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๐ผ(๐บ)๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–.<โˆž(6.17) By (3.66) and (6.11) we get, for every ๐œ“โˆˆ๐’Ÿ(๐ป), ๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๐ผ๐œ“=๎“(๐บ)๎€ป๎€ป๐›ผ=1,2๎“โ„“=1,2,3๎“๐œ–โ‰ ๐œ–โ€ฒe2๐‘–๐‘ก๐ด๐‘ก2๎‚€eโˆ’2๐‘–๐‘ก๐ด๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚e2๐‘–๐‘ก๐ดโˆ’2eโˆ’๐‘–๐‘ก๐ด๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚e๐‘–๐‘ก๐ด+๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๐œ“=๎“๎‚๎‚๐›ผ=1,2๎“โ„“=1,2,3๎“๐œ–โ‰ ๐œ–โ€ฒe2๐‘–๐‘ก๐ด๐‘ก2๎‚€๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;2๐‘ก๎‚โˆ’2๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ก๎‚+๐ป๐ผ๎‚€๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;0๎‚๎‚๐œ“,(6.18) where ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ก๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ=๎€ท๐ท๐œ™๐‘ก๎€ท๐‘2๎€ธ๎€ธ1/2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1;๐œ™๐‘ก๎€ท๐‘2๎€ธ,๐‘ 2;๐œ‰3๎€ธ=๎‚€๐‘’โˆ’๐‘–๐‘ก๐‘Ž๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ.(6.19) Combining (2.53) and (2.54) with (3.26)โ€“(3.28) and (6.18) we get โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๐ผ๐œ“โ€–โ€–๎€ท๐บ(๐บ)๎€ป๎€ปโ‰ค๐‘”๐พ๐‘ก๐ถ๎€ธ๎€ท๐›ฝ๐œ‚โ€–โ€–๎€ท๐ป0๎€ธ๐œ“โ€–โ€–+๎€ท๐ถ+๐ผ๐›ฝ๐œ‚+๐ต๐›ฝ๐œ‚๎€ธ๎€ธ.โ€–๐œ“โ€–(6.20) Here ๐พ(๐บ๐‘ก)>0 and ๐พ๎€ท๐บ๐‘ก๎€ธ2=๎“๐›ผ=1,2๎“โ„“=1,2,3๎“๐œ–โ‰ ๐œ–โ€ฒ1๐‘ก2โ€–โ€–๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;2๐‘กโˆ’2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ก+๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒโ€–โ€–2๐ฟ2(ฮฃ1ร—ฮฃ1ร—ฮฃ2).(6.21) We further note that, for 0<|๐‘ก|โ‰ค1, ๐พ๎€ท๐บ๐‘ก๎€ธโ‰คsup0<|๐‘ |โ‰ค2โŽ›โŽœโŽœโŽ๎“๐›ผ=1,2๎“โ„“=1,2,3๎“๐œ–โ‰ ๐œ–โ€ฒโ€–โ€–โ€–๐œ•2๐œ•๐‘ 2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ โ€–โ€–โ€–2๐ฟ2๎€ทฮฃ1ร—ฮฃ1ร—ฮฃ2๎€ธโŽžโŽŸโŽŸโŽ 1/2.(6.22) We get ๎‚€๐œ•๐บ๐œ•๐‘ก(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ก๎‚=32๎‚€eโˆ’๐‘–๐‘ก๐‘Ž๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚+๎‚€eโˆ’๐‘–๐‘ก๐‘Ž๎‚€๐‘2โ‹…โˆ‡๐‘2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ,๎‚ต๐œ•๎‚๎‚2๐œ•๐‘ก2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ;๐‘ก๎‚ถ=94๎‚€eโˆ’๐‘–๐‘ก๐‘Ž๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚+72๎‚€eโˆ’๐‘–๐‘ก๐‘Ž๎‚€๐‘2โ‹…โˆ‡๐‘2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ+๎“๎‚๎‚๐‘–,๐‘—=1,2,3eโˆ’๐‘–๐‘ก๐‘Ž๎‚€๐‘2,๐‘–๐‘2,๐‘—๐œ•2๐‘2,๐‘–๐‘2,๐‘—๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚.(6.23) Recall that eโˆ’๐‘–๐‘ก๐‘Ž is an one parameter group of unitary operators in ๐ฟ2(ฮฃ1ร—ฮฃ1ร—ฮฃ2).
Combining Hypothesis 3.1(iii.a) and (iii.b) with (6.20)โ€“(6.23) we finally get sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๐ผ๐ป(๐บ)๎€ป๎€ป๎€ท0๎€ธ+1โˆ’1โ€–โ€–<โˆž.(6.24) In view of ๐’Ÿ(๐ป)=๐’Ÿ(๐ป0) the operators ๐ป0(๐ป+๐‘–)โˆ’1 and ๐ป(๐ป0โˆ’1)โˆ’1 are bounded and we obtain sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป0๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๐ผ(๐บ)๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž.(6.25) This yields sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž(6.26) for ๐‘”โ‰ค๐‘”1.
Let ๐‘‰(๐‘2) denote any of the two ๐ถโˆž-vector fields ๐‘ฃ๐œŽ(๐‘2) and ๐‘ฃ๐œŽ(๐‘2) and let ฬƒ๐‘Ž denote the corresponding ๐‘Ž๐œŽ and ๐‘Ž๐œŽ operators. We get ๎‚ต๐œ•2๐œ•๐‘ก2๎‚€eโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎‚๎‚ถ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ=14๎‚€eโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๎‚€๎€ท๎€ท๐‘div๐‘‰2๎€ธ๎€ธ2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎‚๎‚1,๐œ‰2,๐œ‰3๎€ธ+12๎‚€eโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๎‚€๎€ท๎€ท๐‘div๐‘‰2๐‘‰๎€ท๐‘๎€ธ๎€ธ2๎€ธโ‹…โˆ‡๐‘2๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎‚๎‚1,๐œ‰2,๐œ‰3๎€ธ+12๎ƒฉeโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๎ƒฉ3๎“๐‘–,๐‘—=1๎‚€๐‘‰๐‘–๎€ท๐‘2๎€ธ๎‚€๐œ•2๐‘2,๐‘–๐‘2,๐‘—๐‘‰๐‘—๎€ท๐‘2๎€ธ๐บ๎‚๎‚(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎ƒช๎ƒช1,๐œ‰2,๐œ‰3๎€ธ+12๎ƒฉeโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๎ƒฉ3๎“๐‘–,๐‘—=1๐‘‰๐‘–๎€ท๐‘2๎€ธ๐œ•๐‘‰๐‘—๐œ•๐‘2,๐‘–๎€ท๐‘2๎€ธ๐œ•๐œ•๐‘2,๐‘—๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎ƒช๎ƒช1,๐œ‰2,๐œ‰3๎€ธ+12๎ƒฉeโˆ’๐‘–ฬƒ๐‘Ž๐‘ก๎ƒฉ3๎“๐‘–,๐‘—=1๐‘‰๐‘–๎€ท๐‘2๎€ธ๐‘‰๐‘—๎€ท๐‘2๎€ธ๐œ•2๐œ•๐‘2,๐‘–๐œ•๐‘2,๐‘—๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰๎ƒช๎ƒช1,๐œ‰2,๐œ‰3๎€ธ.(6.27) Combining the properties of the ๐ถโˆž fields ๐‘ฃ๐œŽ(๐‘2) and ๐‘ฃ๐œŽ(๐‘2) together with Hypotheses 2.1, 3.1(i) and 3.1(iii) we get, from (6.25) and by mimicking the proof of (6.26), sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–<โˆž(6.28) for ๐‘”โ‰ค๐‘”1.
Similarly, by mimicking the proof of (6.28), we easily get, for ๐‘”โ‰ค๐‘”1, sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐ป๐œŽ๎€ป๎€ป(๐ป๐œŽ+๐‘–)โˆ’1โ€–โ€–<โˆž.(6.29) This concludes the proof of Proposition 6.2.

We now prove Theorem 3.7.

Proof of Theorem 3.7. In view of [5, Lemmaโ€‰โ€‰6.2.3] (see also [4, Propositionโ€‰โ€‰28]), the proof of Theorem 3.7 will follow from Proposition 6.1 and the following estimates: sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘กโ€–โ€–,๐œ‘(๐ป)๎€ป๎€ป<โˆž,(6.30)sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘กโ€–โ€–,๐œ‘(๐ป)๎€ป๎€ป<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘กโ€–โ€–,๐œ‘(๐ป)๎€ป๎€ป<โˆž,sup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐œŽ๐‘ก,๎€บ๐ด๐œŽ๐‘ก,๐œ‘(๐ป๐œŽ)โ€–โ€–๎€ป๎€ป<โˆž(6.31) for every ๐œ‘โˆˆ๐ถโˆž0((โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2)) and for ๐‘”โ‰ค๐‘”1.
Let us prove (6.30). The estimates (6.31) can be proved similarly.
To this end, let ๐œ™ be an almost analytic extension of ๐œ‘ satisfying ||๐œ•๐‘ง||||๐‘ฆ||๐œ™(๐‘ฅ+๐‘–๐‘ฆ)โ‰ค๐ถ3,๎€œ๐œ‘(๐ป)=(๐‘งโˆ’๐ป)โˆ’1d๐œ™(๐‘ง),d1๐œ™(๐‘ง)=โˆ’๐œ‹๐œ•๐œ•๐‘ง๐œ™(๐‘ง)d๐‘ฅd๐‘ฆ.(6.32) It follows that ๎€บ๐ด๐‘ก๎€บ๐ด๐‘ก=๎€œ๎€ท,๐œ‘(๐ป)๎€ป๎€ป(๐‘งโˆ’๐ป)โˆ’1๎€บ๐ด๐‘ก๎€บ๐ด๐‘ก,๐ป๎€ป๎€ป(๐‘งโˆ’๐ป)โˆ’1+2(๐‘งโˆ’๐ป)โˆ’1๎€บ๐ด๐‘ก๎€ป,๐ป(๐‘งโˆ’๐ป)โˆ’1๎€บ๐ด๐‘ก๎€ป,๐ป(๐‘งโˆ’๐ป)โˆ’1๎€ธd๐œ™(๐‘ง).(6.33)
We note that โ€–โ€–(๐ป+๐‘–)(๐ปโˆ’๐‘ง)โˆ’1โ€–โ€–โ‰ค๐ถ||||,Im๐‘งfor๐‘งโˆˆsupp๐œ™.(6.34)
We also have sup0<|๐‘ก|โ‰ค1โ€–โ€–โ€–๎€œ(๐‘งโˆ’๐ป)โˆ’1๎€บ๐ด๐‘ก๎€บ๐ด๐‘ก(,๐ป๎€ป๎€ป๐‘งโˆ’๐ป)โˆ’1dโ€–โ€–โ€–๐œ™(๐‘ง)โ‰คsup0<|๐‘ก|โ‰ค1๎€œโ€–โ€–๎€บ๐ด๐‘ก๎€บ๐ด๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–โ€–โ€–(๐ป+๐‘–)(๐‘งโˆ’๐ป)โˆ’1โ€–โ€–||d||๐œ™(๐‘ง)||||Im๐‘งโ‰ค๐ถsup0<|๐‘ก|โ‰ค1โ€–โ€–๎€บ๐ด๐‘ก,๎€บ๐ด๐‘ก,๐ป๎€ป๎€ป(๐ป+๐‘–)โˆ’1โ€–โ€–๎€œ||d๐œ™||(๐‘ง)||||Im๐‘ง2.(6.35)
Therefore, combining Proposition 3.8(b)(i) and (6.34) we obtain sup0<|๐‘ก|โ‰ค1โ€–โ€–โ€–๎€œd๐œ™(๐‘ง)(๐ปโˆ’๐‘ง)โˆ’1๎€บ๐ด๐‘ก๎€ป(,๐ป๐ปโˆ’๐‘ง)โˆ’1๎€บ๐ด๐‘ก๎€ป(,๐ป๐ปโˆ’๐‘ง)โˆ’1โ€–โ€–โ€–=sup0<|๐‘ก|โ‰ค1โ€–โ€–โ€–๎€œ(๐ปโˆ’๐‘ง)โˆ’1๎€บ๐ด๐‘ก๎€ป,๐ป(๐ป+๐‘–)โˆ’1(๐ป+๐‘–)(๐ปโˆ’๐‘ง)โˆ’1๎€บ๐ด๐‘ก๎€ป,๐ป(๐ป+๐‘–)โˆ’1(๐ป+๐‘–)(๐ปโˆ’๐‘ง)โˆ’1โ€–โ€–โ€–d๎ƒฉ๎€œ||๐œ™(๐‘ง)โ‰ค๐ถd||๐œ™(๐‘ง)||๐‘ฆ||3๎ƒชsup0<|๐‘ก|โ‰ค1โ€–โ€–[๐ด๐‘ก,๐ป](๐ป+๐‘–)โˆ’1โ€–โ€–2<โˆž.(6.36) Inequality (6.36) together with (6.35) yields (6.30), and ๐ป is locally of class ๐ถ2(๐ด) on (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2) for ๐‘”โ‰ค๐‘”1.
In a similar way it follows from Propositions 3.8(b), 6.1, and 6.2 that ๐ป is locally of class ๐ถ2(๐ด๐œŽ) and ๐ถ2(๐ด๐œŽ) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2) and that ๐ป๐œŽ is locally of class ๐ถ2(๐ด๐œŽ) in (โˆ’โˆž,๐‘š1โˆ’๐›ฟ/2), for ๐‘”โ‰ค๐‘”1. This ends the proof of Theorem 3.7.

7. Proof of Theorem 3.4

By (3.91), โ‹ƒ๐‘›โ‰ฅ1((๐›พโˆ’๐œ–๐›พ)2๐œŽ๐‘›,(๐›พ+๐œ–๐›พ)๐œŽ๐‘›)) is a covering by open sets of any compact subset of (๐ธ,๐‘š1โˆ’๐›ฟ] and of the interval (๐ธ,๐‘š1โˆ’๐›ฟ] itself. Theorem 3.4(i) and (ii) follow from [6, Theoremsโ€‰โ€‰0.1 andโ€‰โ€‰0.2] and Theorems 3.7 and 3.10 above with ๐‘”๐›ฟ=ฬƒ๐‘”๐›ฟ(2), where ฬƒ๐‘”๐›ฟ(2) is given in Theorem 3.10. Theorem 3.4(iii) follows from [30, Theoremโ€‰โ€‰25].

Appendix

In this appendix, we will prove Proposition 3.5. We apply the method developed in [3] because every infrared cutoff Hamiltonian that one considers has a ground state energy which is a simple eigenvalue.

Let, for ๐‘›โ‰ฅ0, ๐”‰๐œŽ๐‘›=๐”‰๐‘›,ฮฃ๐‘›+11๐‘›=ฮฃ1โˆฉ๎€ฝ๐‘2;๐œŽ๐‘›+1โ‰ค||๐‘2||<๐œŽ๐‘›๎€พ,๐”‰๐‘›+1โ„“,2,๐‘›=๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ๐‘›+11๐‘›๎€ธ๎€ธโŠ—๐”‰๐‘Ž๎€ท๐ฟ2๎€ทฮฃ๐‘›+11๐‘›,๐”‰๎€ธ๎€ธ๐‘›๐‘›+1=3๎ทโ„“=1๐”‰๐‘›+1โ„“,2,๐‘›.(A.1)

We have ๐”‰๐‘›+1โ‰ƒ๐”‰๐‘›โŠ—๐”‰๐‘›๐‘›+1.(A.2) Let ฮฉ๐‘› (resp., ฮฉ๐‘›๐‘›+1) be the vacuum state in ๐”‰๐‘› (resp., in ๐”‰๐‘›๐‘›+1). We now set ๐ป๐‘›+10๐‘›=๐ป0(1)+๐ป0(3)+3๎“โ„“=1๎“๐œ–=ยฑ๎€œ๐œŽ๐‘›+1โ‰ค|๐‘2|<๐œŽ๐‘›๐‘คโ„“(2)๎€ท๐œ‰2๎€ธ๐‘โˆ—โ„“,๐œ–๎€ท๐œ‰2๎€ธ๐‘โ„“,๐œ–๎€ท๐œ‰2๎€ธd๐œ‰2.(A.3) The operator ๐ป๐‘›+10๐‘› is a self-adjoint operator in ๐”‰๐‘›๐‘›+1.

Let us denote by ๐ป๐‘›๐ผ and ๐ป๐‘›+1๐ผ๐‘› the interaction ๐ป๐ผ given by (2.23) and (2.24) but associated with the following kernels: ๎‚๐œ’๐œŽ๐‘›๎€ท๐‘2๎€ธ๐บ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ,(A.4)๎€ท๎‚๐œ’๐œŽ๐‘›+1๎€ท๐‘2๎€ธโˆ’๎‚๐œ’๐œŽ๐‘›๎€ท๐‘2๐บ๎€ธ๎€ธ(๐›ผ)โ„“,๐œ–,๐œ–โ€ฒ๎€ท๐œ‰1,๐œ‰2,๐œ‰3๎€ธ,(A.5) respectively, where ๎‚๐œ’๐œŽ๐‘›+1 is defined by (3.13).

Let for ๐‘›โ‰ฅ0, ๐ป๐‘›+=๐ป๐‘›โˆ’๐ธ๐‘›,๎‚๐ป๐‘›+=๐ป๐‘›+โŠ—1๐‘›๐‘›+1+1๐‘›โŠ—๐ป๐‘›+10๐‘›.(A.6) The operators ๐ป๐‘›+ and ๎‚๐ป๐‘›+ are self-adjoint operators in ๐”‰๐‘› and ๐”‰๐‘›+1, respectively. Here 1๐‘› and 1๐‘›๐‘›+1 are the identity operators in ๐”‰๐‘› and ๐”‰๐‘›๐‘›+1, respectively.

Combining (2.53) and (2.54) with (3.26)โ€“(3.28) we obtain for ๐‘›โ‰ฅ0, ๐‘”โ€–โ€–๐ป๐‘›๐ผ๐œ“โ€–โ€–๎€ท๐ถโ‰ค๐‘”๐พ(๐บ)๐›ฝ๐œ‚โ€–โ€–๐ป0๐œ“โ€–โ€–+๐ต๐›ฝ๐œ‚๎€ธโ€–๐œ“โ€–(A.7) for every ๐œ“โˆˆ๐’Ÿ(๐ป๐‘›0)โŠ‚๐”‰๐‘›.

It follows from [33, Sectionโ€‰โ€‰V, Theoremโ€‰โ€‰4.11] that ๐ป๐‘›โ‰ฅโˆ’๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๐‘”โ‰ฅโˆ’1๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚,๐ธ๐‘›โ‰ฅโˆ’๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚.(A.8)

We have (ฮฉ๐‘›,๐ป๐‘›ฮฉ๐‘›)=0.(A.9) Therefore ๐ธ๐‘›โ‰ค0,(A.10)||๐ธ๐‘›||โ‰ค๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚.(A.11)

Let ๐พ๐‘›๐‘›+1๎‚€1(๐บ)=๐พ๐œŽ๐‘›+1โ‰ค||๐‘2||โ‰ค2๐œŽ๐‘›๐บ๎‚.(A.12)

Combining (2.53) and (2.54) with (3.26) and (A.12) we obtain for ๐‘›โ‰ฅ0๐‘”โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๐œ“โ€–โ€–โ‰ค๐‘”๐พ๐‘›๐‘›+1๎€ท๐ถ(๐บ)๐›ฝ๐œ‚โ€–โ€–๐ป0๐‘›+1๐œ“โ€–โ€–+๐ต๐›ฝ๐œ‚๎€ธโ€–๐œ“โ€–(A.13) for ๐œ“โˆˆ๐’Ÿ(๐ป0๐‘›+1)โŠ‚๐”‰๐‘›+1, where we remind that ๐ป0๐‘›+1=๐ป0|๐”‰๐œŽ๐‘›+1 as defined in (3.24).

We have, for every ๐œ“โˆˆ๐’Ÿ(๐ป0๐‘›+1), ๐ป0๐‘›+1๎‚๐ป๐œ“=๐‘›+๐œ“+๐ธ๐‘›๎€ท๐ป๐œ“โˆ’๐‘”๐‘›๐ผโŠ—1๐‘›๐‘›+1๎€ธ๐œ“,(A.14) and by (A.7) ๐‘”โ€–โ€–๎€ท๐ป๐‘›๐ผโŠ—1๐‘›๐‘›+1๎€ธ๐œ“โ€–โ€–๎€ท๐ถโ‰ค๐‘”๐พ(๐บ)๐›ฝ๐œ‚โ€–โ€–๐ป0๐‘›+1๐œ“โ€–โ€–+๐ต๐›ฝ๐œ‚๎€ธ.โ€–๐œ“โ€–(A.15)

In view of (A.11) and (A.14) it follows from (A.15) that ๐‘”โ€–โ€–๎€ท๐ป๐‘›๐ผโŠ—1๐‘›๐‘›+1๎€ธ๐œ“โ€–โ€–โ‰ค๐‘”๐พ(๐บ)๐ถ๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚โ€–โ€–๎‚๐ป๐‘›+๐œ“โ€–โ€–+๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๎‚ต1+๐‘”๐พ(๐บ)๐ต๐›ฝ๐œ‚1โˆ’๐‘”1๐พ(๐บ)๐ถ๐›ฝ๐œ‚๎‚ถโ€–๐œ“โ€–.(A.16) By (3.29), (A.13), (A.14), and (A.16) we finally get ๐‘”โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๐œ“โ€–โ€–โ‰ค๐‘”๐พ๐‘›๐‘›+1๎‚€๎‚๐ถ(๐บ)๐›ฝ๐œ‚โ€–โ€–๎‚๐ป๐‘›+๐œ“โ€–โ€–+๎‚๐ต๐›ฝ๐œ‚โ€–๎‚.๐œ“โ€–(A.17)

For ๐‘›โ‰ฅ0, a straightforward computation yields ๐พ๐‘›๐‘›+1(๐บ)โ‰ค๐œŽ๐‘›๎‚๎‚ต๐พ(๐บ)โ‰คsup4ฮ›๐›พ2๐‘š1๎‚ถ๎‚๐œŽโˆ’๐›ฟ,1๐พ(๐บ)๐‘›+1๐›พ.(A.18)

Recall that, for ๐‘›โ‰ฅ0, ๐œŽ๐‘›+1<๐‘š1.(A.19)

By (A.17), (A.18), and (A.19), we get, for ๐œ“โˆˆ๐’Ÿ(๐ป0), ๐‘”โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๐œ“โ€–โ€–โ‰ค๐‘”๐พ๐‘›๐‘›+1๎‚€๎‚๐ถ(๐บ)๐›ฝ๐œ‚โ€–โ€–๎‚€๎‚๐ป๐‘›++๐œŽ๐‘›+1๎‚๐œ“โ€–โ€–+๎‚€๎‚๐ถ๐›ฝ๐œ‚๐‘š1+๎‚๐ต๐›ฝ๐œ‚๎‚โ€–๎‚,๐œ“โ€–(A.20) and for ๐œ™โˆˆ๐”‰, ๐‘”โ€–โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๎‚€๎‚๐ป๐‘›++๐œŽ๐‘›+1๎‚โˆ’1๐œ™โ€–โ€–โ€–โ‰ค๐‘”๐พ๐‘›๐‘›+1๎ƒฉ๎‚๐ถ(๐บ)๐›ฝ๐œ‚+๐‘š1๎‚๐ถ๐›ฝ๐œ‚+๎‚๐ต๐›ฝ๐œ‚๐œŽ๐‘›+1๎ƒชโ‰ค๐‘”โ€–๐œ™โ€–๐›พ๎‚ตsup4ฮ›๐›พ2๐‘š1๎‚ถ๎‚๎‚€โˆ’๐›ฟ,1๐พ(๐บ)2๐‘š1๎‚๐ถ๐›ฝ๐œ‚+๎‚๐ต๐›ฝ๐œ‚๎‚โ€–๐œ™โ€–.(A.21)

Thus, by (A.21), the operator ๐ป๐‘›+1๐ผ๐‘›(๎‚๐ป๐‘›++๐œŽ๐‘›+1)โˆ’1 is bounded and ๐‘”โ€–โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๎‚€๎‚๐ป๐‘›++๐œŽ๐‘›+1๎‚โˆ’1โ€–โ€–โ€–๎‚๐ทโ‰ค๐‘”๐›พ,(A.22) where ๎‚๐ท is given by (see (3.32)) ๎‚๎‚ต๐ท=sup4ฮ›๐›พ2๐‘š1๎‚ถ๎‚๎‚€โˆ’๐›ฟ,1๐พ(๐บ)2๐‘š1๎‚๐ถ๐›ฝ๐œ‚+๎‚๐ต๐›ฝ๐œ‚๎‚.(A.23)

This yields, for ๎‚๐ป๐œ“โˆˆ๐’Ÿ(๐‘›+), ๐‘”โ€–โ€–๐ป๐‘›+1๐ผ๐‘›๐œ“โ€–โ€–๎‚๐ทโ‰ค๐‘”๐›พโ€–โ€–๎‚€๎‚๐ป๐‘›++๐œŽ๐‘›+1๎‚๐œ“โ€–โ€–.(A.24) Hence it follows from [33, Sectionโ€‰โ€‰V, Theoremsโ€‰โ€‰4.11 andโ€‰โ€‰4.12] that ๐‘”||๎€ท๐ป๐‘›+1๐ผ๐‘›๎€ธ||๎‚๐ท๐œ“,๐œ“โ‰ค๐‘”๐›พ๎‚๐ป๎‚€๎‚€๐‘›++๐œŽ๐‘›+1๎‚๎‚.๐œ“,๐œ“(A.25) Let ๐‘”๐›ฟ(2)>0 be such that ๐‘”๐›ฟ(2)๎‚๐ท๐›พ<1,๐‘”๐›ฟ(2)โ‰ค๐‘”๐›ฟ(1).(A.26) By (A.25) we get, for ๐‘”โ‰ค๐‘”๐›ฟ(2), ๐ป๐‘›+1=๎‚๐ป๐‘›++๐ธ๐‘›+๐‘”๐ป๐‘›+1๐ผ๐‘›โ‰ฅ๐ธ๐‘›โˆ’๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1+๎ƒฉ๐‘”๎‚๐ท1โˆ’๐›พ๎ƒช๎‚๐ป๐‘›+.(A.27) Because ๎‚๎‚๐ป(1โˆ’๐‘”๐ท/๐›พ)๐‘›+โ‰ฅ0 we get from (A.27) ๐ธ๐‘›+1โ‰ฅ๐ธ๐‘›โˆ’๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1,๐‘›โ‰ฅ0.(A.28) Suppose that ๐œ“๐‘›โˆˆ๐”‰๐‘› satisfies โ€–๐œ“๐‘›โ€–=1 and, for ๐œ–>0, (๐œ“๐‘›,๐ป๐‘›๐œ“๐‘›)โ‰ค๐ธ๐‘›+๐œ–.(A.29) Let ๎‚๐œ“๐‘›+1=๐œ“๐‘›โŠ—ฮฉ๐‘›๐‘›+1โˆˆ๐”‰๐‘›+1.(A.30) We obtain ๐ธ๐‘›+1โ‰ค๎‚€๎‚๐œ“๐‘›+1,๐ป๐‘›+1๎‚๐œ“๐‘›+1๎‚โ‰ค๐ธ๐‘›๎‚€+๐œ–+๐‘”๎‚๐œ“๐‘›+1,๐ป๐‘›+1๐ผ๐‘›๎‚๐œ“๐‘›+1๎‚.(A.31) By (A.25), (A.29), (A.30), and (A.31) we get, for every ๐œ–>0, ๐ธ๐‘›+1โ‰ค๐ธ๐‘›๎ƒฉ๐‘”๎‚๐ท+๐œ–1+๐›พ๎ƒช+๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1,(A.32) where ๐‘”โ‰ค๐‘”๐›ฟ(2).

This yields ๐ธ๐‘›+1โ‰ค๐ธ๐‘›+๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1,(A.33) and by (A.28), we obtain ||๐ธ๐‘›โˆ’๐ธ๐‘›+1||โ‰ค๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1.(A.34)

For ๐‘›=0, since ๐œŽ0=ฮ›, remind that ๐ป00=๐ป0๐‘›=0=๐ป๐œŽ00=๐ป0|๐”‰ฮ›. Thus, the ground state energy of ๐ป00 is 0 and it is a simple isolated eigenvalue of ๐ป00 with ฮฉ0, the vacuum in ๐”‰0, as eigenvector. Moreover, since ฮ›>๐‘š1, ๎€ท๐œŽ๎€ท๐ปinf00๎€ธ๎€ธโงต{0}=๐‘š1,(A.35) thus (0,๐‘š1) belongs to the resolvent set of ๐ป00.

By Hypothesis 3.1(iv) we have ๐ป0=๐ป00. Hence ๐ธ0={0} is a simple isolated eigenvalue of ๐ป0 and ๐ป0=๐ป0+. We finally get ๎€ท๐œŽ๎€ท๐ปinf0+๎€ธ๎€ธโˆ’{0}=๐‘š1>๐‘š1โˆ’๐›ฟ2=๐œŽ1.(A.36)

We now prove Proposition 3.5 by induction in ๐‘›โˆˆโ„•โˆ—. Suppose that ๐ธ๐‘› is a simple isolated eigenvalue of ๐ป๐‘› such that ๎€ท๐œŽ๎€ท๐ปinf๐‘›+๎€ธ๎€ธโ‰ฅ๎ƒฉ๎‚๐ทโงต{0}1โˆ’3๐‘”๐›พ๎ƒช๐œŽ๐‘›,๐‘›โ‰ฅ1.(A.37) Since (3.36) gives ๐œŽ๐‘›+1๎‚<(1โˆ’3๐‘”๐ท/๐›พ)๐œŽ๐‘› for ๐‘”โ‰ค๐‘”๐›ฟ(2), 0 is also a simple isolated eigenvalue of ๎‚๐ป๐‘›+ such that ๎‚€๐œŽ๎‚€๎‚๐ปinf๐‘›+๎‚๎‚โงต{0}โ‰ฅ๐œŽ๐‘›+1.(A.38) We must now prove that ๐ธ๐‘›+1 is a simple isolated eigenvalue of ๐ป๐‘›+1 such that ๎€ท๐œŽ๎€ท๐ปinf+๐‘›+1๎€ธ๎€ธโ‰ฅ๎ƒฉ๎‚๐ทโงต{0}1โˆ’3๐‘”๐›พ๎ƒช๐œŽ๐‘›+1.(A.39) Let ๐œ†(๐‘›+1)=sup๐œ“โˆˆ๐”‰๐‘›+1;๐œ“โ‰ 0inf(๐œ™,๐œ“)=0;๐œ™โˆˆ๐’Ÿ(๐ป๐‘›+1);โ€–๐œ™โ€–=1๎€ท๐œ™,๐ป+๐‘›+1๐œ™๎€ธ.(A.40) By (A.27) and (A.33), we obtain, in ๐”‰๐‘›+1, ๐ป+๐‘›+1โ‰ฅ๐ธ๐‘›โˆ’๐ธ๐‘›+1โˆ’๐‘”๎‚๐ท๐›พ๐œŽ๐‘›+1+๎ƒฉ๐‘”๎‚๐ท1โˆ’๐›พ๎ƒช๎‚๐ป๐‘›+โ‰ฅ๎ƒฉ๐‘”๎‚๐ท1โˆ’๐›พ๎ƒช๎‚๐ป๐‘›+โˆ’๎‚๐ท2๐‘”๐›พ๐œŽ๐‘›+1.(A.41) By (A.30), ๎‚๐œ“๐‘›+1 is the unique ground state of ๎‚๐ป๐‘›+, and by (A.38) and (A.41), we have, for ๐‘”โ‰ค๐‘”๐›ฟ(2), ๐œ†(๐‘›+1)โ‰ฅinf(๐œ™,๎‚๐œ“๐‘›+1)=0;๐œ™โˆˆ๐’Ÿ(๐ป๐‘›+1);โ€–๐œ™โ€–=1๎€ท๐œ™,๐ป+๐‘›+1๐œ™๎€ธโ‰ฅ๎ƒฉ๐‘”๎‚๐ท1โˆ’๐›พ๎ƒช๐œŽ๐‘›+1โˆ’๎‚๐ท2๐‘”๐›พ๐œŽ๐‘›+1=๎ƒฉ๎‚๐ท1โˆ’3๐‘”๐›พ๎ƒช๐œŽ๐‘›+1>0.(A.42) This concludes the proof of Proposition 3.5 by choosing ๐‘”๐›ฟ=๐‘”๐›ฟ(2), if one proves that ๐ป1 satisfies Proposition 3.5. By noting that 0 is a simple isolated eigenvalue of ๎‚๐ป0+ such that ๎‚๐ปinf(๐œŽ(0+)โงต{0})=๐œŽ1, we prove that ๐ธ1 is indeed an isolated simple eigenvalue of ๐ป1 such that inf(๐œŽ(๐ป1+๎‚)โงต{0})โ‰ฅ(1โˆ’3๐‘”๐ท/๐›พ)๐œŽ1 by mimicking the proof given above for ๐ป+๐‘›+1.

Acknowledgments

The second author wishes to thank Laurent Amour and Benoรฎt Grรฉbert for helpful discussions. The authors also thank Walter Aschbacher for valuable remarks. The work was done partially while J.-M. B. was visiting the Institute for Mathematical Sciences, National University of Singapore in 2008. The visit was supported by the institute.