Research Article
Prediction of Cutting Conditions in Turning AZ61 and Parameters Optimization Using Regression Analysis and Artificial Neural Network
Table 2
Comparison between the regression model and ANN predictions.
| Machining parameters | Measured Ra (µm) | Regression model | ANN | Speed | Depth | Feed | Predicted Ra | Residual | Predicted Ra | Residual |
| 125 | 1.12 | 0.15 | 1.154 | 1.05 | 0.11 | 1.14 | 0.01 | 200 | 1.12 | 0.2 | 1.896 | 2.39 | −0.49 | 2.16 | −0.26 | 175 | 1.12 | 0.1 | 0.464 | 0.46 | 0.01 | 0.57 | −0.11 | 150 | 0.6 | 0.15 | 1.1058 | 0.95 | 0.16 | 0.90 | 0.21 | 175 | 0.3 | 0.1 | 0.386 | 0.39 | −0.01 | 0.39 | −0.01 | 125 | 1.12 | 0.05 | 0.144 | 0.20 | −0.06 | 0.19 | −0.05 | 150 | 0.3 | 0.15 | 0.954 | 0.90 | 0.06 | 0.83 | 0.12 | 150 | 1.12 | 0.2 | 1.911 | 2.39 | −0.48 | 2.00 | −0.09 |
|
|