Research Article

Prediction of Compressive Strength Behavior of Ground Bottom Ash Concrete by an Artificial Neural Network

Table 10

Weight matrices and bias vectors of the optimal ANN model.

1st hidden layer2st hidden layerOutput layer
Weight valuesBias valuesWeight valuesBias valueWeight valuesBias value

2.2520432051−0.39817126740.1426346319−0.0140866410−3.4309213367−0.13917962541.9325463746−66.225404615963.2786024914
−1.3586053592−0.0135040464−0.01069286190.0006243239−0.6791399848−20.4516033471
−37.8060871011−0.0142097100−0.0097865080−0.131256030613.0270855658−5.2081025307
−1.4842859686−0.02254829510.0129510442−0.03458027262.31633103890.2904504482
−1.5862514326−0.0278216812−0.01765692690.0011291431−0.561726508111.8122578704
−0.33614300390.00093753620.0017038103−0.1433868490−2.957540395910.8229621316