Research Article
Prediction of Compressive Strength Behavior of Ground Bottom Ash Concrete by an Artificial Neural Network
Table 4
The adjustment parameters used in the ANN models.
| Adjustment parameters | ANN models |
| Number of input layer units | 4 | Number of first hidden layer units | 4 : 1 : 14 | Number of second hidden layer units | 1 : 1 : 2 | Number of output layer units | 1 | Number of epochs | 500 : 500 : 20,000 | Performance goal | 1.00E − 06 | Momentum rate | Default | Learning rate | Default | Training algorithm | BR | Activation function in hidden layer | Log-sigmoid and tan-sigmoid | Activation function in output layer | Purelin linear | Network’s performance | sse |
|
|